Optical Detection of Ultrasound using Two-Wave Mixing in Semiconductor Photorefractive Crystals and Comparison with the Fabry-Perot

  • Alain Blouin
  • Philippe Delaye
  • Denis Drolet
  • Louis-Anne de Montmorillon
  • Jean Claude Launay
  • Gerald Roosen
  • Jean-Pierre Monchalin

Abstract

Optical detection of ultrasound presents several advantages over conventional ultrasonic techniques; performed without contact and at a distance it can be used to probe parts at elevated temperature, in particular on a production line, and parts of complex shape. However, optical techniques are typically less sensitive than conventional piezoelectric-based techniques1. Hence, efforts have been done to improve the sensitivity of optical techniques while maintaining their useful features such as a large detection bandwidth.

Keywords

Graphite Attenuation Epoxy Radium GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    E.S. Boltz, C.M. Fortunko, M.A. Hamstad, M.C. Renken, Absolute sensitivity of air, light and direct-coupled wideband acoustic emission transducers, Review of Progress in Quantitative Nondestructive Evaluation, 14: 967, (1995), Edited by D.O. Thompson and D.E. Chimenti, Plenum Press, New-York.CrossRefGoogle Scholar
  2. 2.
    J.-P. Monchalin, Optical detection of ultrasound, IEEE Trans. Ultrason. Ferroelectrics and Freq. Cont. UFFC-33: 485, 1986.CrossRefGoogle Scholar
  3. 3.
    R.K. Ing, J.P. Monchalin, Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal, Appl. Phys. Lett. 59: 3233, (1991).CrossRefGoogle Scholar
  4. 4.
    A. Blouin, J.P. Monchalin, Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal, Appl. Phys. Lett. 65: 932, (1994).CrossRefGoogle Scholar
  5. 5.
    C.M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev D, 23: 1693, 1981.CrossRefGoogle Scholar
  6. 6.
    P. Connes, L’étalon de Fabry-Pérot sphérique, J. Physique et le Radium, 19: 262, (1958).CrossRefGoogle Scholar
  7. 7.
    P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J.P. Monchalin, Detection of an ultrasonic motion of a scattering surface by photorefarctive InP: Fe under an applied DC field, Journal of the Optical Society of America, 14: 1723, 1997.CrossRefGoogle Scholar
  8. 8.
    L.A. de Montmorillon, I. Biaggio, Ph. Delaye, J.C. Launay, G. Roosen, Eye-safe large field-of-view homodyne detection using a photorefractive CdTe: V crystal, Opt. Comm. 129: 293 (1996).CrossRefGoogle Scholar
  9. 9.
    P. Delaye, L.A. de Montmorillon, G. Roosen, Transmission of time modulated optical signals through an absorbing photorefractive crystal, Opt. Comm., 118: 156, (1995).CrossRefGoogle Scholar
  10. 10.
    A. Moreau, M. Lord, High frequency Laser-Ultrasonics, This proceeding.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Alain Blouin
    • 1
  • Philippe Delaye
    • 2
  • Denis Drolet
    • 1
  • Louis-Anne de Montmorillon
    • 2
  • Jean Claude Launay
    • 3
  • Gerald Roosen
    • 2
  • Jean-Pierre Monchalin
    • 1
  1. 1.Institut des Matériaux IndustrielsConseil National de Recherches du CanadaBouchervilleCanada
  2. 2.Institut d’Optique Théorique et AppliquéeUnité de Recherche Associée 14 au Centre National de la Recherche ScientifiqueOrsay CedexFrance
  3. 3.Action Aquitaine de recherche en apesanteurSaint Médard en Jalles CedexFrance

Personalised recommendations