Skip to main content

Measurement of the Stiffness Tensor of Orthotropic Materials from Line Source Point Receiver Laser Ultrasonic Method

  • Chapter
Nondestructive Characterization of Materials VIII

Abstract

The propagation of an ultrasonic wave through a sample is widely used for the measurement of the stiffness tensor of orthorhombic materials. The immersion technic1–3 allows the identification of all the nine coefficients of the above mentioned tensor, from phase velocity measurements of the plane waves propagating through the sample. LASER generation of ultrasound4, associated with an optical interferometric detection, is a non contact methodology offering an alternative solution for the characterization of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. M. F. Markham, Measurement of the elastic constants of fibre composites by ultrasonics, Composites I, pp. 145-149 (1970).

    Google Scholar 

  2. J. Roux, B. Hosten, B. Castagnede, and M. Deschamps, Caractérisation mécanique des solides par spectro-interférométrie ultrasonore, Revue Phys. Appl., 20, pp. 351–358, (1985).

    Article  CAS  Google Scholar 

  3. S. Baste and B. Hosten, Evaluation de la matrice d’élasticité des composites orthotropes par propagation ultrasonore en dehors des plans principaux de symétrie, Revue Phys. Appl., 25, pp. 161–168, (1990).

    Article  CAS  Google Scholar 

  4. C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications, Bristol, Philadelphia and New York, (1990).

    Google Scholar 

  5. D. A. Hutchins, Ultrasonic Generation by Pulsed Laser, New York, (1988).

    Google Scholar 

  6. K. Aki and P.G. Richards, Quantitative Seismology, vol. 1, Freeman, San Francisco, (1980).

    Google Scholar 

  7. A. G. Every, W. Sachse, K. Y. Kim, and M. O. Thompson, Phonon focusing in silicon at ultrasonic frequencies, Phys. Rev. Lett. 65, pp. 1446–1449 (1990).

    Article  CAS  Google Scholar 

  8. B. A. Auld, Acoutic Fields and Waves in Solids, Second Edition Vol. 1, Krierger, (1990).

    Google Scholar 

  9. H. J. Maris, Enhancement of heat pulse in crystal due to elastic anisotropy, J. Acoust. Soc. Am. 50, pp. 812–818 (1971).

    Article  CAS  Google Scholar 

  10. M. Deschamps and C. Bescond, Numerical method to recover the elastic constants from ultrasound group velocities, Ultrasonics. 33, pp. 205–211 (1995).

    Article  Google Scholar 

  11. A.G. Every and W. Sachse, Determination of the elastic constants of an anisotropic solids from acoustic-wave group-velocity measurements, Phys. Rev. B, 42, pp. 8196–8205, (1990)

    Article  Google Scholar 

  12. A. Mourad and M. Deschamps, Lamb’s problem for an anisotropic half space studied by the Cagniard de Hoop method, J. Acoust. Soc. Am., 97, pp. 3194–3197, (1994).

    Article  Google Scholar 

  13. A. T. D. Hoop, A modification of Cagniard’s method for solving seismic pulse problem, Appl.sci.res., B-8, pp. 349-356, (1960).

    Google Scholar 

  14. D. Royer and E. Dieulesaint, Optical detection of sub-Angstrom transient mechanical displacement, IEEE Ultrason. Symp. Proc., pp. 527-530 (1986).

    Google Scholar 

  15. B. Audoin, C. Bescond, and M. Deschamps, Recovering of stiffness coefficients of anisotropic materials from point-like generation and detection of acoustic waves, Journal of Applied Physics 80(7), pp. 3760–3771 (1996).

    Article  CAS  Google Scholar 

  16. B. Audoin, S. Baste, and B. Castagnéde, Estimation de l’intervalle de confiance des constantes d’élasticité identifiées à partir des vitesses de propagation ultrasonores, C.R.Acad. Sci. Paris 312, II, pp. 679–686, (1991).

    Google Scholar 

  17. B. Audoin and C. Bescond, Measurement by LASER generated ultrasound of four stiffness coefficients of an anisotropic material at elevated temperatures. Journ. of Nondest. Eval., 16 (2), (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Audoin, B., Bescond, C., Qian, M. (1998). Measurement of the Stiffness Tensor of Orthotropic Materials from Line Source Point Receiver Laser Ultrasonic Method. In: Green, R.E. (eds) Nondestructive Characterization of Materials VIII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4847-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4847-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7198-4

  • Online ISBN: 978-1-4615-4847-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics