Fatigue Characterization of AISI 321 Austenitic Steel by Means of HTC-SQUID

  • Marco Lang
  • Hans-Jürgen Bassler
  • Jane Johnson

Abstract

Austenitic steel of the grade AISI 321 (German Grade 1.4541) is often used in power station and plant constructions. The evaluation of the fatigue damage and thus the remaining lifetime of this and related austenitic materials is a task of enormous practical relevance. In spite of intensive research work it is still impossible to evaluate the fatigue damage of materials nondestructively in order to determine the remaining lifetime. AISI 321 austenitic steel forms martensite due to quasi-static and cyclic loading. This presupposes the exceeding of the threshold value of cumulated plastic strain. The main aim is to determine the fatigue damage of austenitic steel by characterizing the martensitic structure with the help of the SQUID measuring technique. Several specimen batches were evaluated and thereby the load amplitudes and the test temperature were varied (room temperature and 300°C).

Keywords

Permeability Fatigue Austenite Helium Martensite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Bayerlein, M.; Christ, H.-J.; Mughrabi, H., Plasticity induced martensitic transformation during cyclic deformation of AISI 304L stainless steel, Mater. Sci. Eng., vol. 114A, 1989, L11–L16Google Scholar
  2. 2.
    Lang, M., Bassler, H.-J., Untersuchungen zur Charakterisierung der Werkstoffermüdung in austenitischen Werkstoffen unter Anwendung von HTSL-SQUID, DGZfP-Berichtsband 55, Berlin 1996, pp. 76-82Google Scholar
  3. 3.
    Krause, H.-J. et. al., HTS-SQUID Magnetometer with digital feedback control for NDE Applications, Review of Progress in Nondestructive Evaluation, Vol 16A, pp. 2129–2135, Plenum Press, New York, 1997Google Scholar
  4. 4.
    Schreiber, J., Dobmann, G., Lang, M., Eitler, D., Bassler, H.-J., Gampe, U., Ehrlich, R., Charakterisierung von Werkstoffermüdung in austenitischen Werkstoffen unter Anwendung von HTSL-SQUID, 5. Statusseminar Supraleitung und Tieftemperaturphysik, Köln, 1996Google Scholar
  5. 5.
    Otaka, M., Enomoto, K., Hyashi, M., Sakata, S., Shimizu, S., Detection of Fatigue Damage in Stainless Steel Using a SQUID Sensor, Residual Stress and Integrity with NDE, ASME 1994, PVP-Vol. 276, NDE-Vol. 12Google Scholar
  6. 6.
    Wagner, V., private communicationGoogle Scholar
  7. 7.
    Briggs, A., An Introduction to Scanning Acoustic Microscopy, Microscopy Handbooks, 12, Oxford University Press, 1985Google Scholar
  8. 8.
    Krause, H.-J., Junger, M. et. al., Mobile HTS-SQUID System for Eddy Current Testing of Aircraft, Review of Progress in Nondestructive Evaluation, Vol 16A, pp. 1053–1060, Plenum Press, New York, 1997Google Scholar
  9. 9.
    Altpeter, I., Kern, R., Lang, M., Quantitative Evaluation of Thermally Induced Residual Stresses in White Cast Iron and Steels with different Cementite Morphologies, Review of Progress in Nondestructive Evaluation, Vol 16B, pp. 1649–1653, Plenum Press, New York, 1997Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marco Lang
    • 1
  • Hans-Jürgen Bassler
    • 2
  • Jane Johnson
    • 1
  1. 1.Fraunhofer Institut Zerstörungsfreie Prüfverfahren IZFPSaarbrückenGermany
  2. 2.Lehrstuhl für WerkstoffkundeUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations