The F0F1-ATP Synthase in Cell Proliferation and Aging

  • Ferruccio Guerrieri

Abstract

In normal conditions, the cellular ATP is provided mainly by the mitochondrial oxidative phosphorylation (OXPHOS), which is an integrated process between energy production by the respiratory chain and energy utilization by the F0F1ATP synthase complex of the inner mitochondrial membrane, with the remainder met by glycolysis. Oxidative phosphorylation capacity and the ATP needs vary from tissue to tissue. The brain is the organ with the highest demand for aerobic ATP, but heart muscle and kidney also have a high oxidative phosphorylation capacity (Wallace, 1992). The contribution of OXPHOS to the cellular energy demand changes, however, in the life span and in response to the physical activity (Papa, 1996).

Keywords

Permeability Glutathione Adenosine Alkane Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammendola, R., Fiore, F., Esposito, F., Caserta, G., Mesuraca, M., Russo, T., and Cimino, F., 1995, Differentially expressed mRNAs as a consequence of oxidative stress in intact cells, FEBS Lett. 371:209–213.PubMedCrossRefGoogle Scholar
  2. Attardi, G., and Schatz, G., 1988, Biogenesis of mitochondria, Annu. Rev. Cell. Biol. 4:289–333.PubMedCrossRefGoogle Scholar
  3. Bláha, V., Simek, J., and Zadák, Z., 1992, Liver regeneration in partially hepatectomized rats infused with carnitine and lipids, Exp. Toxic Pathol. 44:165–168.CrossRefGoogle Scholar
  4. Boffoli, D., Scacco, S. C., Vergari, R., Solarino, G., Santacroce, G., and Papa, S., 1994 Decline with age of the respiratory chain activity in human skeletal muscle, Biochim. Biophys. Acta 1226:73–82.PubMedCrossRefGoogle Scholar
  5. Boffoli, D., Scacco, S. C., Vergari, R., Persio, M. T., Solarino, G., Laforgia, R., and Papa, S., 1996, Ageing is associated in females with a decline in the content and activity of the bc 1 complex in skeletal muscle mitochondria, Biochim. Biophys. Acta 1315:66–72.PubMedCrossRefGoogle Scholar
  6. Bucher, N. R. L., and Malt, R. A., 1971, Regeneration of liver and kidney, in Thirty Years of Liver Regeneration: A Distillate (N. L. R. Bucker, ed.), pp. 15–26, Little, Brown and Co., Boston.Google Scholar
  7. Buckle, M., Guerrieri, F., Pazienza, A., and Papa, S., 1986, Studies on polypeptide composition, hydrolytic activity and proton conduction of mitochondrial F0F1 H+-ATPase in regenerating rat liver. Eur. J. Biochem. 155:439–445.PubMedCrossRefGoogle Scholar
  8. Byrne, E., Dennet, X., and Trounce, I., 1991, Oxidative energy failure in fixed post-mitotic cells: A major factor in senescence, Rev. Neurol. 147:6–7, 532–535.Google Scholar
  9. Capozza, G., Guerrieri, F., Vendemiale, G., Altomare, E., and Papa, S., 1994, Age related changes of the mitochondrial energy metabolism in rat liver and heart, Arch. Gerontol. Geriatr. Suppl. 4:31–38.CrossRefGoogle Scholar
  10. Chance, B., Sies, H., and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:527–605.PubMedGoogle Scholar
  11. Cooper, J. M., Mann, V. M., and Schapira, A. V. H., 1992, Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing, J. Neurol. Sci. 113:91–98.PubMedCrossRefGoogle Scholar
  12. Ferrándiz, M.L., Martínez, M., De Juan, E., Díez, A., Bastos, G., and Miquel, J., 1994, Impairment of mitochondrial oxidative phosphorylation in the brain of aged mice, Brain Res. 644: 335–338.PubMedCrossRefGoogle Scholar
  13. Goldberg, A. L., 1992, The mechanism and functions of ATP-dependent proteases in bacterial and animal cells, Eur. J. Biochem. 203:9–23.PubMedCrossRefGoogle Scholar
  14. Guerrieri, F., Kopecky, J., and Zanotti, F., 1989, Functional and immunological characterization of mitochondrial F0F1-ATP synthase, in Organelles in Eukaryotic Cells: Molecular Structure and Interactions (J. M. Tager, A. Azzi, and S. Papa, eds.), pp. 197–208, Plenum, New York, London.CrossRefGoogle Scholar
  15. Guerrieri, F., Capozza, G., Kalous, M., Zanotti, F., Drahota, Z., and Papa, S., 1992a, Age-dependent changes in the mitochondrial F0F1-ATP synthase, Arch. Geront. Geriatr. 14:299–308.CrossRefGoogle Scholar
  16. Guerrieri, F., Capozza, G., Kalous, M., and Papa, S., 1992b, Age-dependent changes in the mitochondrial F0F1-ATP synthase, Ann. NY Acad. Sci. 671:395–402.PubMedCrossRefGoogle Scholar
  17. Guerrieri, F., Capozza, G., Fratello, A., Zanotti, F., and Papa, S., 1993, Functional and molecular changes in F0F1 ATP-synthase of cardiac muscle during aging, Cardioscience 4:93–98.PubMedGoogle Scholar
  18. Guerrieri, F., Kalous, M., Capozza, G., Muoio, L., Drahota, Z., and Papa, S., 1994, Age dependent changes in mitochondrial F0F1-ATP synthase in regenerating rat-liver, Biochem. Molec. Biol. Int. 33:117–129.PubMedGoogle Scholar
  19. Guerrieri, F., Muoio, L., Cocco, T., Capozza, G., Turturro, N., Cantatore, P., and Papa, S., 1995, Correlation between rat liver regeneration and mitochondrial energy metabolism, Biochim. Biophys. Acta 1272:95–100.PubMedCrossRefGoogle Scholar
  20. Guerrieri, F., Vendemiale, G., Turturro, N., Fratello, A., Furio, A., Muoio, L., Grattagliano, I., and Papa, S., 1996, Alteration of mitochondrial F0F1-ATP synthase during aging, Ann. NY Acad. Sci. 786:62–71.PubMedCrossRefGoogle Scholar
  21. Hansford, R. G., 1983, Bioenergetics in aging, Biochim. Biophys. Acta 726:41–80.PubMedCrossRefGoogle Scholar
  22. Harman, D., 1956, Aging: A theory based on free radical and radiation chemistry, J. Gerontol. 11:298–300.PubMedCrossRefGoogle Scholar
  23. Izquierdo, J. M., Luis, A. M., and Cuezva, J. M., 1990, Postnatal mitochondrial differentiation in rat-liver, J. Biol. Chem. 265:9090–9097.PubMedGoogle Scholar
  24. Kadenbach, B., Münscher, C., Frank, V., Müller-Höcker, J., and Napiwotzki, J., 1995, Human aging is associated with stochastic somatic mutations of mitochondrial DNA, Mutat. Res. 338:161–172.PubMedCrossRefGoogle Scholar
  25. Lai, H. S., Chen, W. J., and Chen, K. M., 1992, Energy substrate for liver regeneration after partial hepatectomy in rats: Effects of glucose vs fat, J. Parenter. Enter. Nutr. 16:152–156.CrossRefGoogle Scholar
  26. Lee, C. P., and Ernster, L., 1968, Studies of the energy transfer system of submitochondrial particles. Effects of oligomycin and aurovertin, Eur. J. Biochem. 3:391–409.PubMedCrossRefGoogle Scholar
  27. Michalopoulos, G. K., 1990, Liver regeneration: Molecular mechanisms of growth control, FASEB J. 4:176–187.PubMedGoogle Scholar
  28. Miquel, J., and Fleming, J., 1986, Theoretical and experimental support for an oxygen radical mitochondrial injury. Hypothesis of cell aging, in Free Radicals, Aging and Degenerative Diseases (J. E. Johnson, R. Walford, D. Harman, and J. Miquel, eds.), pp. 51–74, Alan Liss, New York.Google Scholar
  29. Müller-Höcker, J., 1992, Mitochondria and ageing, Brain Pathol. 2:149–152.PubMedCrossRefGoogle Scholar
  30. Nagino, M., Tanaka, M., Nishikimi, M., Nimura, Y., Kubota, H., Kanai, M., Kato, T., and Ozawa, T., 1989, Stimulated rat liver mitochondrial biogenesis after partial hepatectomy, Cancer Res. 49:4913–4918.PubMedGoogle Scholar
  31. Ngala-Kenda, J. F., de Hamptinne, B., and Lambotte, L., 1984, Role of metabolic overload in the initiation of DNA synthesis following partial hepatectomy in the rat, Eur. Surg. Res. 16: 294–302.PubMedCrossRefGoogle Scholar
  32. Nohl, H., and Kramer, R., 1980, Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase, Mech. Ageing Dev. 14:137–144.PubMedCrossRefGoogle Scholar
  33. Olafsdottir, K., Pascoe, G. A., and Reed, D. J., 1988, Mitochondrial glutathione status during Ca2+ ionophore-induced injury to isolated hepatocytes, Arch. Biochem. Biophys. 263:226–235.PubMedCrossRefGoogle Scholar
  34. Ove, P., Takai, S., Umeda, T., and Lieberman, I., 1967, Adenosine triphosphate in liver after partial hepatectomy and acute stress, J. Biol Chem. 242:4963–4971.PubMedGoogle Scholar
  35. Pansini, A., Guerrieri, F., and Papa, S., 1978, Control of proton conduction by the H+-ATPase in the inner mitochondrial membrane, Eur. J. Biochem. 92:545–551.PubMedCrossRefGoogle Scholar
  36. Papa, S., 1996, Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications, Biochim. Biophys. Acta 1276:87–105.PubMedCrossRefGoogle Scholar
  37. Papa, S., Tager, J. M., Guerrieri, F., and Quagliariello, E., 1969, Effect of monovalent cations on oxidative phosphorylation in submitochondrial particles, Biochim. Biophys. Acta 172: 194–186.Google Scholar
  38. Papa, S., Guerrieri, F., Capuano, F., and Zanotti F., 1998, The mitochondrial ATP synthase in normal and neoplastic cell growth, in Cell Growth and Oncogenesis (P. Bannash, D. Kanduc, S. Papa, and J. M. Tager, eds.), pp. 31–46, Birkhäuser Verlag, Basel.CrossRefGoogle Scholar
  39. Paradies, G., Ruggiero, F. M., Gadaleta, M. N., and Quagliariello, E., 1992, The effect of aging and acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria, Biochim. Biophys. Acta 1103:324–326.PubMedCrossRefGoogle Scholar
  40. Paradies, G., Ruggiero, F. M., Petrosillo, G., Gadaleta, M. N., and Quagliariello, E., 1994, Effect of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria, FEBS Lett. 350:213–215.PubMedCrossRefGoogle Scholar
  41. Rastogi, R., Saksena, S., Garg, N. K., and Dhawan, B. N., 1995, Effect of picroliv on antioxidant-system in liver of rats, after partial hepatectomy, Phytother. Res. 9:364–367.CrossRefGoogle Scholar
  42. Richie, J. P., Jr., 1992, The role of glutathione in aging and cancer, Exp. Gerontol. 27:615–626.PubMedCrossRefGoogle Scholar
  43. Rouslin, W., 1983, Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5′-triphosphatase in ischemic and autolyzing cardiac muscle, J. Biol. Chem. 258:9657–9661.PubMedGoogle Scholar
  44. Rouslin, W., and Broge, C. W., 1989, Regulation of mitochondrial matrix pH and adenosine 5′-triphosphatase activity during ischemic in slow heart-rate hearts, J. Biol. Chem. 264: 15224–15229.PubMedGoogle Scholar
  45. Rouslin, W., Broge, C. W., Guerrieri, F., and Capozza, G., 1995, ATPase activity, IF1 content and proton conductivity of ESMP from control and ischemic slow and fast heart-rate hearts, J. Bioenerget. Biomembr. 27:459–466.CrossRefGoogle Scholar
  46. Skullman, S., Ihse, I., and Larsson, J., 1991, Availability of energy substrates during liver regeneration in malnourished rats, Scand. J. Gastroenterol. 26:1152–1156.PubMedCrossRefGoogle Scholar
  47. Slater, T., and Sawyer, B., 1971, The stimulatory effect of carbon tetrachloride and other halogeno-alkanes on peroxidative reactions in rat liver fractions in vitro, Biochem. J. 123:805–814.PubMedGoogle Scholar
  48. Stadtman, E. R., 1992, Protein oxidation and aging, Science 257:1220–1224.PubMedCrossRefGoogle Scholar
  49. Steer, C. J., 1995, Liver regeneration, FASEB J. 9:1396–1400.PubMedGoogle Scholar
  50. Torii, K., Sugiyama, S., Tagagi, K., Satake, T., and Ozawa, T., 1992, Age-related increase in respiratory muscle mitochondrial function in rats, Am. J. Cell. Mol. Biol. 6:88–92.Google Scholar
  51. Tsai, I. L., King, K. L., Chang, C. C., and Wei, Y., 1992, Changes of mitochondrial respiratory functions and superoxide dismutase activity during liver regeneration, Biochem. Int. 28: 205–217.PubMedGoogle Scholar
  52. Uriel, J., 1979, Retrodifferentation and the fetal patterns of gene expression in cancer, Adv. Cancer Res. 29:127–174.PubMedCrossRefGoogle Scholar
  53. Valcarce, C., Navarete, R. M., Encabo, P., Loeches, E., Satrùstegui, J., and Cuezva, J. M., 1988, Postnatal development of rat liver mitochondrial function. The roles of protein synthesis and adenine nucleotides, J. Biol. Chem. 263:7767–7775.PubMedGoogle Scholar
  54. Vendemiale, G., Guerrieri, F., Grattagliano, I., Didonna, D., Muoio, L., and Altomare, E., 1995, Mitochondrial oxidative phosphorylation and intracellular glutathione compartmentation during rat liver regeneration, Hepatology 21:1450–1454.PubMedCrossRefGoogle Scholar
  55. Vendemiale, G., Grattagliano, I., Altomare, E., Turturro, N., and Guerrieri, F., 1996, Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the rat, Biochem. Pharmacol. 52:1147–1154.PubMedCrossRefGoogle Scholar
  56. Viña, J., ed., 1990, Glutathione: Metabolism and Physiological Functions, CRC Press, Boston.Google Scholar
  57. Wallace, D. C., 1992, Diseases of the mitochondrial DNA, Annu. Rev. Biochem. 61:1175–1212.PubMedCrossRefGoogle Scholar
  58. Zhang, Y., Marcillat, O., Gulivi, C., Ernster, L., and Davies, J. A., 1990, The oxidative inactivation of mitochondrial electron transport chain components and ATPase, J. Biol. Chem. 265:16330–16336.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Ferruccio Guerrieri
    • 1
  1. 1.Institute of Medical Biochemistry and Chemistry, and Centre for the Study of Mitochondria and Energy MetabolismUniversity of BariBariItaly

Personalised recommendations