Whorl Width in the Body Chamber of Ammonites as a Sign of Dimorphism

  • Carlo Sarti


The clearest indication of dimorphism in ammonites is considered to be the shell diameter between forms which have identical inner whorls but which reached maturity at different sizes. Callomon coined the apt terms macroconch (M) and microconch (m) for the large and small forms, respectively. The character of the more or less inflated and broadened whorls of the body chamber, clearly represented in the width:diameter ratio W:D, is another very important manifestation of dimorphism, always present, in my opinion. This character has been used to separate “male” (LARGIVENTER conch = L) from “female” (LEVIVENTER conch = 1), and in some Mesozoic ammonites presents a clear bimodal distribution. The present paper gives some examples of dimorphism from the literature and personal studies on faunas from the Trento Plateau (Northern Italy), demonstrating the great importance of the W:D ratio with which dimorphic pairs can be recognized.


Sexual Dimorphism Body Chamber Shell Diameter Whorl Section Whorl Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre-Urreta, M.B., and Rawson, P.R, 1993, The lower Cretaceous Ammonite Paraspiticeras from the Neuquen Basin, West-Central Argentina, N. Jb. Palaeont. Abh, 188:51–69.Google Scholar
  2. Callomon, J.H., 1955, The ammonite succession in the Lower Oxford Clay and Kellaways Beds at Kidlington, Oxfordshire, and the zones of the Callovian Stage, Phyl. Trans. R. Soc, B 239:215–264.CrossRefGoogle Scholar
  3. Callomon, J.H., 1981, Dimorphism in Ammonoids, in: The Ammonoidea, Systematic Association Spec Vol. 18 (M.R.House, and J.R.Senior, eds.), Academic Press,London, pp.257–273.Google Scholar
  4. Callomon, J.H., 1985, The evolution of the Jurassic Ammonite family Cardioceratidae; Spec. Pap. Palaeont, 33:49–90.Google Scholar
  5. Callomon, J.H., and Wright, J.K., 1989, Cardioceratid and Kosmoceratid Ammonites from the Callovian of Yorkshire, Palaeontology 32/4:799–836.Google Scholar
  6. Checa, A., 1984, Phylogenetic relations among Oxfordian and Kimmeridgian Aspidoceratinae “classical species”, deduced from the Subbetic record (South Spain), Geobios 17/1:21–31.CrossRefGoogle Scholar
  7. Checa, A., 1985, Los Aspidoceratiformes en Europa (Ammonitina, Farn. Aspidoceratidae: Subfamilias Aspidoceratinae y Physodoceratinae, Tesis Doctoral Univ. Granada, Imp. Sec. de public. Hosp. Real Granada: 1–412.Google Scholar
  8. Cobban, W.A., and Hook, S.C., 1980, The Upper Cretaceous (Turonian) Ammonite Family Coilopoceratidae Hyatt in the Western Interior of the United States, Geol. Surv. Prof. Pap .1192:1–28.Google Scholar
  9. Cobban, W.A., and Kennedy, W.J., 1993, The Upper Cretaceous dimorphic Pachydiscid Ammonite Menuites in the Western Interior of the United States, U.S. Geol. Surv. Prof. Pap, 1553:1–14.Google Scholar
  10. Cope, J.C.W., 1992, Dimorphism in a Tethyan early Jurassic Juraphyllites, Lethaia 25:439–441.CrossRefGoogle Scholar
  11. Crick, R.E., 1978, Morphological variations in the Ammonite Scaphites of the Blue Hill Member, Carlile Shale, upper Cretaceous, Kansas Paleont.Contr.Univ.Kansas, Univ. Kansas Palaeont. Contrib, 88: 1–28.Google Scholar
  12. Dagys, A.S., and Weitschat, W, 1993, Extensive intraspecific variation in a Triassic ammonoid from Siberia; Lethaia 26:113–121.CrossRefGoogle Scholar
  13. Dommergues, J.L., 1994, The Jurassic ammonite Coeloceras:an atypical example of dimorphic progenesis elucidated by cladistics, Lethaia 27: 143–152.CrossRefGoogle Scholar
  14. Enay, R., and Cecca, F., 1986, Structure et évolution des populations tithoniques du genre d’ammonites téthysien Haploceras Zittel, 1868, in: Atti del primo convegno internazionale, Fossili Evoluzione e Ambiente, Pergola 1984 (Comitato Centenario Raffaele Piccinini Ed.), Stamp.Belli, Pesaro, pp.37–53.Google Scholar
  15. Guex, J., 1981, Quelques cas de dimorphisme chez les ammonoides du Lias inférieur, Bull. Lab.Géol.Min.Géoph. Mus. Géol. Univ. Lausanne, 258: 239–248.Google Scholar
  16. Gygi, R.A., and Marchand, D., 1982, Les Faunes de Cardioceratinae (Ammonoidea) du Callovien terminal et de l’Oxfordien inférieur et moyen (Jurassique) de la Suisse septentrionale: stratigraphie,paléoécologie, tax-onomie préliminaire, Geobios 15/4:517–571.CrossRefGoogle Scholar
  17. Hantzpergue, P., 1989, Les Ammonites Kimméridgiennes du Haut-Fond d’Europe occidentale, Cahier Paléont., 1–428.Google Scholar
  18. Hantzpergue, P., Atrops, F., and Enay, R., 1997, Kimméridgien, in: Biostratigraphie du Jurassique Ouest-Européen et Méditerranéen (E. Cariou and P. Hantzpergue, eds.); Bull. Centre Rech. Elf Explor. Prod, 17: 87–96.Google Scholar
  19. Haug, M.E., 1910, Note sur le péristome du Phylloceras mediterraneum; Bull. Soc. Gèol. De France, 3Ser. 18: 328–334.Google Scholar
  20. Haven, N., 1977, The reproductive biology of Nautilus pompilus in the Philippines, Mar. Biol, 42:177–184.CrossRefGoogle Scholar
  21. Howart, M.K., and Donovan, D.T., 1964, Ammonites of the Liassic family Juraphyllitidae in Britain, Palaeontology 7/2: 286–305.Google Scholar
  22. Jacobs, D.K., and Landman, N.H., 1993, Nautilus, a poor model for the function and behavior of Ammonoids?, Lethaia 26:101–111.CrossRefGoogle Scholar
  23. Joly, B., 1976, Les Phylloceratidae malgaches au Jurassique. Generalités sur les Phylloceratidae et quelques Juraphyllitidae, Doc.lab.Geol.Fac.Sc.Lyon 67: 1–471.Google Scholar
  24. Joly, B., 1993, Les Phyllocerataceae malgaches au Crétacé (Phylloceratina, Ammonoidea), Doc. lab. Geol. Fac. Sc.Lyon 127:5–171.Google Scholar
  25. Kennedy, W.J., and Cobban, W.A., 1976, Aspect of Ammonite biology, Biogeography, and Biostratigraphy, Spec. Pap. Palaeont, 17: 1–94.Google Scholar
  26. Kennedy, W.J., and Hancock, J.M., 1970, Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France, Palaeontology 13/3:462–490.Google Scholar
  27. Lehmann, U., 1981, The Ammonites, their life and their world, Cambridge University Press, 246 pp.Google Scholar
  28. Makowsky, H., 1962, Problem of Sexual Dimorphism in Ammonites, Palaeont. Polon, 12:1–92.Google Scholar
  29. Mangold-Wirz, K., 1963, Biologie des céphalopodes bénthiques et néktoniques de la mer Catalane, Vie et millieu Suppl. 12:1–283.Google Scholar
  30. Meléndez G. 1989 El Oxfordense en el sector central de la Cordillera Ibérica (Provincias de Zaragoza y Teruel) Inst.Est.Turol.:1–418Google Scholar
  31. Neige, P., Marchand, D., and Laurin, B., 1997, Heterochronic differentiation of sexual dimorphism among Jurassic ammonite species, Lethaia 30: 145–155.CrossRefGoogle Scholar
  32. Palframan, D.F.B., 1969, Taxonomy of sexual Dimorphism in Ammonites: Morphogenetic Evidence in Hectico-ceras brightii (Pratt), in: Sexual Dimorphism in Fossil Metazoa and Taxonomic Implications (G.E.G. Westermann, ed.), Schweizerbart’sche Verlagsbuch. Stuttgart, pp. 126–152.Google Scholar
  33. Reeside, J.B., and Cobban, W.A., 1960, Studies of the Mowry Shale (Cretaceous) and Contemporary Formations in the United States and Canada, Geol. Surv. Prof. Pap, 355:1–126.Google Scholar
  34. Reyment, R.A., 1988, Does sexual dimorphism occur in Upper Cretaceous ammonites ?, Senckenberg. Leth, 69/1-2:109–119.Google Scholar
  35. Sarti, C, 1990, Dimorfismo nella specie Sowerbyceras loryi (Mun.Chlm.) del Kimmeridgiano, in: Atti del secondo convegno internazionale. Fossili Evoluzione e Ambiente, Pergola 1987 (G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tecnostampa, Roma, pp. 427–439.Google Scholar
  36. Sarti, C, 1993, II Kimmeridgiano delle Prealpi Veneto-Trentine: Fauna e Biostratigrafia, Mem. Mus. Civ. St. Nat. Verona II, 5: 9–205.Google Scholar
  37. Sarti, C, in preparation, Evolution and dimorphism of the ammonite genus Sowerbyceras in the Kimmeridgian.Google Scholar
  38. Saunders, B.W., and Spinosa, C, 1978, Sexual dimorphism in Nautilus from Palau, Paleobiol 4/3: 349–358.Google Scholar
  39. Silberling, N.J., 1959, Pre-Tertiary Stratigraphy and upper Triassic Palaeontology of the Union District Shoshone Mountains Nevada, Geol Surv. Prof. Pap. 322:1–67.Google Scholar
  40. Stenzel, H.B., 1952, Living Nautilus, in: Treatise oflnv. Paleont., Nautiloidea (R.C. Moore, ed.) H: pp. 2–19.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Carlo Sarti
    • 1
  1. 1.Dipartimento di Scienze GeologicheUniversità di BolognaBolognaItaly

Personalised recommendations