Skip to main content

Computational Properties of a Neuronal Model for Noisy Subthreshold Oscillations

  • Chapter
Computational Neuroscience

Abstract

Intrinsic subthreshold oscillations are a rather common feature of a variety of neurons in the peripheral and central nervous system. Examples reach from neurons in the amygdala, entorhinal and frontal cortex to sensory receptors such as mammalian cold receptors or multimodal ampullary sensory receptors of teleosts1–6. The phenomenon is characterized by oscillatory changes in the membrane potential which are below or close to the spike threshold. In this situation, naturally occuring stochastic influences due to membrane or synaptic noise seem to be an essential component for signal encoding. The reason is, that now the noise actually determines whether a spike is triggered during an oscillation cycle or not. Typical mixed patterns result consisting of spike-triggering and subthreshold oscillations (figure 1, see also ref. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, A., and Klink, K., 1993, Differential electroresponsiveness of stellate-and pyramidal-like cells of medial entorhinal cortex layer II. J. Neurophysiol. 70, 128–143.

    PubMed  CAS  Google Scholar 

  2. Braun, H.A., Bade, H. and Hensel, H., 1980, Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflügers Arch. 386, 1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Braun, H.A., Wissing, H., Schäfer, K. and Hirsch, M.C., 1994, Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273.

    Article  PubMed  CAS  Google Scholar 

  4. Gutfreund, Y., Yarom, Y. and Segev, L, 1995, Subthreshold oscillations and resonant frequencies in guinea-pig cortical neurons: physiology and modelling. J. Physiol. 483.3, 621–640.

    PubMed  CAS  Google Scholar 

  5. Llinas, R.R., Grace, A.A. and Yarom, Y., 1991, In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz frequency range. Proc. Natl. Acad. Sci. USA 88, 897–901.

    Article  PubMed  CAS  Google Scholar 

  6. Pare, D., Pape, H.C. and Dong, J., 1995, Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo: electrophysiological properties and morphological features. J. Neurophysiol. 74, 1179–1191.

    PubMed  CAS  Google Scholar 

  7. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H.J., 1988), Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern. 60, 121–130.

    Article  PubMed  CAS  Google Scholar 

  8. Engel, A.K., Kreiter, A.K., König, P. and Singer, W., 1991, Synchronization of oscillatory neurona 1 responses between striate and extrastriate cortical areas of the cat. Proc. Natl. Acad. Sci. USA 88, 6048–6052.

    Article  PubMed  CAS  Google Scholar 

  9. Bulsara, A. and Gammaitoni, L., 1996, Tuning in to noise. Physics Today March, 39–45.

    Google Scholar 

  10. Wiesenfeld, K. and Moss, F., 1995, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36.

    Article  PubMed  CAS  Google Scholar 

  11. Longtin, A., 1993, Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327.

    Article  Google Scholar 

  12. Wang, X.J., 1993, Ionic basis for intrinsic 40Hz neuronal oscillations. Neuro Report 5, 221–224.

    CAS  Google Scholar 

  13. Longtin, A. and Hinzer, K., 1996, Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural. Comp. 8, 215–255.

    Article  CAS  Google Scholar 

  14. Fox, R.F., Gatland, I.R., Roy, R. and Vemuri, G., 1988, Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938–5940.

    Article  PubMed  Google Scholar 

  15. Braun, H.A., Huber, M.T., Dewald, M., Schäfer, K. and Voigt, K., 1998, Computer simulations of neuronal signal transduction: the role of nonlinear dynamics and noise. Int. J. Bifurcation and Chaos. In press.

    Google Scholar 

  16. Braun, H.A., Huber, M.T., Dewald, M. and Voigt, K., 1997: The neuromodulatory properties of noisy neuronal oscillators. In: Kadtge JB, Bulsara A, editors. Applied Nonlinear Dynamics and Stochastic Systems near the Millenium, The American Institute of Physics, pp 281–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huber, M.T., Braun, H.A., Dewald, M., Voigt, K., Krieg, J.C. (1998). Computational Properties of a Neuronal Model for Noisy Subthreshold Oscillations. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4831-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4831-7_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7190-8

  • Online ISBN: 978-1-4615-4831-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics