Temporal Characteristics of V1 Cells Arising from Synaptic Depression

  • Frances S. Chance
  • Sacha B. Nelson
  • L. F. Abbott


Neurons in the primary visual cortex (VI) exhibit response characteristics qualitatively different from their LGN afferents. Some of these characteristics, such as the oriented structure of simple cell receptive fields, can be explained as arising from linear combinations of LGN receptive fields.1 However, many aspects of VI responses, especially in the temporal domain, reflect underlying nonlinear mechanisms. Here we study the idea that synaptic depression may give rise to many of these nonlinearities. Synaptic depression is observed in intracortical3–5 as well as thalamocortical6,7 synapses and has been proposed as a possible mechanism for contrast adaptation and direction selectivity.2,9 We construct a model VI simple cell and explore the effects of synaptic depression on the temporal dynamics of its responses. Our results indicate that synaptic depression may play an important role in the enhancement of responses to transient stimuli, direction selectivity, and contrast adaptation.


Receptive Field Simple Cell Direction Selectivity Synaptic Depression Synaptic Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hubel, D. H. and Wiesel, T. N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Neurophysiol. 160: 106–154 (1962).Google Scholar
  2. 2.
    Markram, H. and Tsodyks, M. V., Redistribution of synaptic efficacy between neocortical pyramidal neurones, Nature 382: 807–809.Google Scholar
  3. 3.
    Abbott, L. F., Sen, K., Varela, J. A., and Nelson, S. B., Synaptic depression and cortical gain control, Science 275: 220–222 (1997).PubMedCrossRefGoogle Scholar
  4. 4.
    Tsodyks, M. and V., Markram, H., The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, Proc. Natl. Acad. Sci. USA 94: 719–723, (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    Varela, J., Sen, K., Gibson, J., Fost, J., Abbott, L. F., and Nelson, S. B., A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex, J. Neurosci. 17: 7926–7940 (1997).PubMedGoogle Scholar
  6. 6.
    Stratford, K. J., Tarczy-Hornuch, K., Martin, K. A. C, Bannister, N. J., Jack, J. J. B., Excitatory synaptic inputs to spiny stellate cells in cat visual cortex, Nature 382: 258–261 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    Gil, Z., Douglas, R., Marlin, S., Cynader, M., Differential regulation of neocortical synapses by neuromodulators and activity, Neuron 19: 679–686 (1997).Google Scholar
  8. 8.
    Nelson, S. B., Varela, J. A., Sen, K., and Abbott, L. F., Functional significance of synaptic depression between cortical neurons, in: Computational Neuroscience, Trends in Research 1997, J. Bower, ed, Plenum, NY (1997).Google Scholar
  9. 9.
    Chance, F. S., Nelson, S. B., Abbott, L. F., Synaptic depression and the temporal response characteristics of VI cells, submitted (1998).Google Scholar
  10. 10.
    Maex, R. and Orban, G. A., Model circuit of spiking neurons generating directional selectivity in simple cells, J. Neurophysiol. 75: 1515–1545 (1996).PubMedGoogle Scholar
  11. 11.
    Ohzawa, L, Sclar, G., and Freeman, R. D., Contrast gain control in the cat visual cortex, Nature 298: 266–268 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    Dean, A. F., Tolhurst, D. J., and Walker, N. S., Non-linear temporal summation by simple cells in cat striate cortex demonstrated by failure of superposition, Exp. Brain Res. 62: 143–151.Google Scholar
  13. 13.
    Reid, R. C, Victor, J. D., and Shapley, R. M., Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex, Vis. Neurosci. 9: 39–45.Google Scholar
  14. 14.
    Suarez, H., Koch, C., and Douglas, R., Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit, J. Neurosci. 15: 6700–6719 (1995).PubMedGoogle Scholar
  15. 15.
    Saul, A. B. and Humphreys, A. L., Spatial and temporal properties of lagged and nonlagged cells in the cat lateral geniculate nucleus, J. Neurophysiol. 68: 1190–1208 (1990).Google Scholar
  16. 16.
    Jagadeesh, B., Wheat, H. S., and Ferster, D., Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex, Science 262: 1901–1904 (1993).Google Scholar
  17. 17.
    Kontsevich, L. L., The nature of the inputs to cortical motion detectors, Vision Res. 35: 2785–2793 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    Tolhurst, D. J. and Dean, A. F., Evaluation of a linear model of directional selectivity in simple cells of the cats striate cortex, Vis. Neurosci. 6: 421–428 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    Saul, A. B. and Humphreys, A. L., Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis. Neurosci. 8: 365–372 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Frances S. Chance
    • 1
  • Sacha B. Nelson
    • 1
  • L. F. Abbott
    • 1
  1. 1.Volen Center and Department of BiologyBrandeis UniversityWalthamUSA

Personalised recommendations