Skip to main content

The Importance of Intra- and Intermolecular Weak Bonds in Transition Metal Coordination Compounds

  • Chapter

Abstract

There is an increasing interest in supramolecular systems involving inorganic and organic compounds with specific properties that may lead, eventually, to novel materials and devices and to challenging advances in materials science and biochemistry. Supramolecular chemistry is the “chemistry beyond the molecule”, i.e. the “chemistry controlled by non-covalent intermolecular forces”.1 Of specific interest are self-assembled arrays of molecules and selforganized supramolecular systems. The general textbook definition describes a molecule as a “well defined assembly of atoms bound to each other”, as the “smallest unit of a pure compound with the specific chemical properties of the corresponding bulk material”.2 These definitions of molecules and supramolecular systems are as intuitive as they are ambiguous. Is the array of water molecules in beautiful ice flowers a supramolecular assembly, is the crystallization of sodium chloride a self-organization process? Challenging and truly interesting supramolecular systems have properties that are different from those of the constituent “molecules”. Where then is the limit between a molecule and a supramolecular system, which of the interactions are intra- and which are intermolecular? When does an interaction cease to be a bond and start to be a nonbonded interaction? In order to circumvent problems of this kind, I will often use the term “system” instead of “molecule”, and I will not distinguish between inter-and intramolecular bonds and interactions. The aim of the present chapter is to demonstrate the importance of interactions in coordination compounds that are not always appreciated as bonds. The examples cover structural and thermodynamic aspects, as well as spectroscopy and reactivity. Since some of these studies are discussed with the help of molecular modeling, a few general and important aspects of modeling related to intermolecular interactions are presented first.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-M. Lehn. “Supramolecular Chemistry — Concepts and Perspectives”, VCH, Weinheim (1995).

    Book  Google Scholar 

  2. J.E. Huheey, “Inorganic Chemistry — Principles of Structure and Reactivity”, Harper, New York, 2nd edn. (1978).

    Google Scholar 

  3. P. Comba and T. W. Hambley, “Molecular Modeling of Inorganic Compounds”. VCH, Weinheim (1995).

    Google Scholar 

  4. P. Comba, in: “Fundamental Principles of Molecular Modeling”, W. Gans, A. Amann and J. C. A. Boeyens, eds., p. 169, Springer Science+Business Media New York, (1996).

    Google Scholar 

  5. P. Comba, in “Molecular Modeling and Dynamics of Bioinorganic Compounds”, Kluwer Academic Publishers, Dordrecht, Boston, London (1997).

    Google Scholar 

  6. J. Sabolovic and K. Rasmussen, Inorg. Chem. 34:1221 (1995).

    Article  Google Scholar 

  7. L. Glasser, in; “Fundamental Principles of Molecular Modeling”, W. Gans, A. Amann and J.C.A. Boeyens, eds., p. 199, Springer Science+Business Media New York (1995).

    Google Scholar 

  8. B.J. Hathaway and P.G. Hodgson, Inorg. Nucl. Chem. 35:4071 (1973).

    Article  Google Scholar 

  9. J. Gazo, I.B. Bersuker, J. Garaj, J. Kabesova, H. Langfelderova, M. Melni, M. Serator and F. Valack, Coord. Chem. Rev. 19:253 (1976).

    Article  Google Scholar 

  10. H. Oshio, Inorg. Chem. 32:4123 (1993).

    Article  Google Scholar 

  11. T.W. Hambley, J. Chem. Soc. Dalton Trans. p. 565 (1986).

    Google Scholar 

  12. P. Comba, A. Peters and H. Pritzkow, Structure and properties of a copper(II) tetraamine with an extremely short axial bond, publication in preparation.

    Google Scholar 

  13. P. Comba, P. Hilfenhaus and B. Nuber, Helv. Chim. Acta 80:1831 (1997).

    Article  Google Scholar 

  14. P. Comba, T. W. Hambley, M. A. Hitchman and H. Stratemeier, Inorg. Chem. 34:3903 (1995).

    Article  Google Scholar 

  15. M.A. Hitchman, Transition Met. Chem. 9:1 (1985).

    Google Scholar 

  16. C.E. Schäfer and C.K. Jørgensen, Mol. Phys. 9:401 (1965).

    Article  ADS  Google Scholar 

  17. E. Larsen and G.N. LaMar J. Chem. Educ. 51:633 (1974).

    Article  Google Scholar 

  18. M. Saburi, K. Miyamura, M. Monta, Y. Mizoguchi, S. Yoshikawa, S. Tsuboyama, T. Sakurai and K. Tsuboyama, Bull. Chem. Soc. Jpn. 60:141 (1987).

    Article  Google Scholar 

  19. P. Comba, T. W. Hambley, G. A. Lawrance, L. L. Martin, P. Renold and K. Vrnagy, J. Chem. Soc., Dalton Trans. p. 277 (1991).

    Google Scholar 

  20. J. Balla, P. V. Bernhardt, P. Buglyo, P. Comba, T.W. Hambley, R. Schmidlin, S. Stebler and K. Várnagy, J. Chem. Soc., Dalton Trans. p. 1143 (1993).

    Google Scholar 

  21. P.V. Bernhardt, P. Comba, T.W. Hambley, G.A. Lawrance and K. Várnagy, J. Chem. Soc., Dalton Trans. p. 355 (1992).

    Google Scholar 

  22. P. Comba, N. F. Curtis, G. A. Lawrance, M. A. O’Leary, B. W Skelton and A H. White, J. Chem. Soc., Dalton Trans. p. 2145 (1988).

    Google Scholar 

  23. W.L. Driessen and W.L. Groeneveld, Rec. Trav. Chim. 88:491 (1969).

    Article  Google Scholar 

  24. W.L. Driessen and W.L. Groeneveld, Rec. Trav. Chim. 88:620 (1969).

    Article  Google Scholar 

  25. W.L. Driessen and W.L. Groeneveld, Rec. Trav Chim. 89:1271 (1970).

    Article  Google Scholar 

  26. P. Comba, S. P. Gavrish, R. W Hay, P. Hilfenhaus, Y. D. Lampeka, P. Lightfoot and A. Peters, Analysis and interpretation of significant structural differences of dinuclear complexes (M = Ni(II), Cu(II)) of a bismacrocyclic ligand, publication in preparation.

    Google Scholar 

  27. P. V. Bernhardt, P. Comba, T. W. Hambley, S. S. Massoud and S. Stebler, Inorg. Chem. 31:2644 (1992)

    Article  Google Scholar 

  28. P. Comba, Comm. Inorg. Chem. 16:133 (1994)

    Article  Google Scholar 

  29. P. Comba and P. Hilfenhaus, J. Chem. Soc., Dalton Trans. p. 3269(1995).

    Google Scholar 

  30. P. Comba, T.W. Hambley, P. Hilfenhaus and D.T. Richens, J. Chem. Soc., Dalton Trans. p. 533 (1996).

    Google Scholar 

  31. J.-P. Mathieu, Ann. Phys. 19:335 (1944).

    Google Scholar 

  32. E.J. Corey and J.C. Bailar Jr., J. Am. Chem. Soc. 81:2620 (1959).

    Article  Google Scholar 

  33. W. G. Jackson, M. L. Hookey, M. L. Randall, P. Comba and A. M. Sargeson, Inorg. Chem. 23:2473 (1984).

    Article  Google Scholar 

  34. G.H. Searle, Aust. J. Chem. 30:2525 (1977).

    Google Scholar 

  35. F.R. Keene and G.H. Searle, Inorg. Chem. 13:2173 (1974).

    Article  Google Scholar 

  36. A.M. Bond, F.R. Keene, N.W. Rumble, G.H. Searle and M.R. Snow, Inorg. Chem. 17:2847 (1978).

    Article  Google Scholar 

  37. M. Dwyer and G.H. Searle, J. Chem. Soc., Chem. Comm. p. 726 (1972).

    Google Scholar 

  38. Y. Yoshikawa, Bull. Chem. Soc. Jpn. 49:159 (1976).

    Article  Google Scholar 

  39. A.M. Bond, T.W. Hambley and M.R. Snow, Inorg. Chem. 24:1920 (1985).

    Article  Google Scholar 

  40. P. V. Bernhardt and P. Comba, Inorg. Chem. 31:2638 (1992).

    Article  Google Scholar 

  41. P. Comba, T. W. Hambley and M. Ströhle, Helv. Chim. Acta, 78:2042 (1995).

    Article  Google Scholar 

  42. J. E. Bol, C. Buning, P. Comba, J. Reedijk and M. Ströhle, J. Comput. Chem. (1997), in press.

    Google Scholar 

  43. P. Comba, T. W. Hambley and L. Zipper, Helv. Chim. Acta 71:1875 (1988).

    Article  Google Scholar 

  44. P. Comba, Coord. Chem. Rev. 123:1 (1993).

    Article  Google Scholar 

  45. P. Comba and A. F. Sickmüller, Inorg. Chem. 36:4500 (1997).

    Article  Google Scholar 

  46. P. Comba and A. F. Sickmüller, Angew. Chem. 109:2089 (1997).

    Article  Google Scholar 

  47. P. Comba and A. F. Sickmüller, Angew. Chem. Int. Ed. Engl. 36:2006 (1997).

    Article  Google Scholar 

  48. P. Comba and H. Jakob, Helv. Chim. Acta 80:1983 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Comba, P. (1998). The Importance of Intra- and Intermolecular Weak Bonds in Transition Metal Coordination Compounds. In: Gans, W., Boeyens, J.C.A. (eds) Intermolecular Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4829-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4829-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7189-2

  • Online ISBN: 978-1-4615-4829-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics