Study of Intermolecular Interactions Using Crystal Structure Database as Reference: A Preliminary Report on the Adjustment of Van Der Waals Constants

  • Eiji Ōsawa
  • Hitoshi Gotō
  • Takako Sugiki
  • Keisuke Imai


The Cambridge Structure Database (CSD) of X-ray crystal structures1 provides an immense treasurehouse of non-covalent intermolecular interactions. One way of making wise use of the unprecedented situation that more than 120,000 high-quality data on the crystal packing of molecular solids can be readily retrieved at our fingertips will be to re-formulate potential functions of van der Waals and other weak intermolecular interactions adopted in the empirical molecular mechanics schemes by using CSD as the reference. In spite of the high research activities aimed at improving potential functions for molecular dynamics, Monte Carlo calculations, and other atomistic simulations of chemical phenomena, the crystal structure approach has, to our knowledge, never been adopted. The use of high-level ab initio computational results as the standard has been eagerly pursued for the past decade,2 and proved effective in constructing force fields for dynamic phenomena such as chemical reactions.3 However, a large enough reference dataset with high enough accuracy is yet to appear. It should be recalled that molecular orbital calculations are by no means the most suitable method for describing weak intermolecular interactions.


Genetic Algorithm Reference Dataset Of39 Crystal Genetic Algorithm Parameter Of39 Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. H. Allen, in: “Fundamental Principles of Molecular Modeling,” W. Gans, A. Amann, and J. C. A. Boeyens, eds., p. 105, Springer Science+Business Media New York (1996).Google Scholar
  2. 2.(a)
    J. R. Hill, and J. Sauer, J. Phys. Chem. 99:9536 (1995).CrossRefGoogle Scholar
  3. (b).
    B. J. Palmer and J. L. Anchell, J. Phys. Chem. 99:12239 (1995).CrossRefGoogle Scholar
  4. (c).
    D. Q. Mcdonald and W. C. Still, J. Org. Chem. 61:1385 (1996).CrossRefGoogle Scholar
  5. (d).
    E. A. Mash, T. M. Gregg, and M. T. Stahl, J. Org. Chem. 62:3715 (1997).CrossRefGoogle Scholar
  6. (e).
    G. Y. Liang, X. N. Chen, J. A. Dustman, A. H. Lewin, and J. P. Bowen, J. Comput. Chem. 18:1371 (1997).CrossRefGoogle Scholar
  7. 3.
    Y. Fukazawa, and T. Haino, J. Syn. Org. Chem. Jpn., 54:419 (1996).CrossRefGoogle Scholar
  8. 4.
    A. Gavezzotti, ed. “Theoretical Aspects and Computer Modeling of the Molecular Solid State,” John Wiley & Sons, Chichester (1997).Google Scholar
  9. 5.
    E. Ōsawa, Potential Energy Calculations of Crystals, in: “Reactivity in Molecular Crystals,” Y. Ohashi, ed., Kodansha, Tokyo/VCH Publ, New York (1993).Google Scholar
  10. 6.
    The algorithm was used by Sironi to study crystal dynamics of iron carbonyl: A. Sironi, Inorg. Chem., 35:1725 (1996).CrossRefGoogle Scholar
  11. 7.
    BIGSTRN3: R. B. Nachbar, Jr., and K. Mislow, QCPE, #514.Google Scholar
  12. 8.
    BS/KESSHOU (version 1.0): E. Ōsawa, P. M. Ivanov, H. Gotō, M. Yamato, J. Rudzinski, and A. Aoki, JCPE, No. P111. Japan Chemistry Program Exchange: 1-7-12 Nishinenishi, Tsuchiura, Ibaraki-ken 300, Japan, Fax 81-298-30-4162, homepage Scholar
  13. 9.
    U. Burkert and N. L. Allinger. “Molecular Mechanics,” American Chemical Society, Washington, D. C. (1982).Google Scholar
  14. 10.
    N. L. Allinger, Y. H. Yuh, and J. H. Lii, J. Am. Chem. Soc., 111:8551 (1989).CrossRefGoogle Scholar
  15. 11.
    P. M. Ivanov, J. Mol. Struct. in press.Google Scholar
  16. 12.(a)
    Y-M. Xun, T. Ouchi, C. Jaime, E. Ōsawa, A. Okamoto, and T. Higuchi, JCPE Newsletter, 1:24 (1989).Google Scholar
  17. (b).
    T. Murakami, E. Ōsawa, and Y. Mochizuki, QCPE Bull., 8:15 (1988).Google Scholar
  18. (c).
    E. Ōsawa, and Y. Mochizuki, QCPE Bull. 5:119 (1985)Google Scholar
  19. 13.
    D. E. Goldberg. “Genetic Algorithm in Search, Optimization and Machine Learning,” Addison-Wesley, Reading, MA (1989).Google Scholar
  20. 14.(a)
    D. L. Carroll, in: “Developments in Theoretical and Applied Mechanics,” Vol. XVIII, H. Wilson, R. Batra, C. Bert, A. Dawis, R. Schapery, D. Stewart, and F. Swinson., eds., University of Alabama, Birmingham (1996), p. 411.Google Scholar
  21. (b).
    J. Devillers, ed. “Genetic Algorithms in Molecular Modelling,” Academic Press, New York (1996).Google Scholar
  22. 15.
    D. L. Carroll, FORTRAN Genetic Algorithm (GA) Driver, See also ref. 14a.Google Scholar
  23. 16.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund. “Science of Fullerenes and Carbon Nanotubes,” Academic Press, San Diego (1996), p. 18.Google Scholar
  24. 17.
    M. Nishio, Y. Umezawa, M. Hirota, and Y. Takeuchi, Tetrahedron, 51:8665 (1995).CrossRefGoogle Scholar
  25. 18.
    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople. “Ab Initio Molecular Orbital Theory,” John Wiley & Sons, New York (1986).Google Scholar
  26. 19.(a)
    G. R. Desiraju, and B. N. Murty, Chem. Phys. Lett., 139:360 (1987).ADSCrossRefGoogle Scholar
  27. (b).
    G. R. Desiraju, J. Chem. Soc., Chem. Commun., p. 179 (1989).Google Scholar
  28. (c).
    T. Steiner, and W. Saenger, J. Am. Chem. Soc., 115:4540 (1993).CrossRefGoogle Scholar
  29. (d).
    T. Steiner, J. Chem. Soc., Chem. Commun., p. 101 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Eiji Ōsawa
    • 1
  • Hitoshi Gotō
    • 2
  • Takako Sugiki
    • 1
  • Keisuke Imai
    • 3
  1. 1.Department of Knowledge-based Information Engineering Faculty of EngineeringToyohashi University of TechnologyTempaku-cho Toyohashi 441Japan
  2. 2.Institute for Chemical Reaction ScienceTohoku UniversityAoba-ku SendaiJapan
  3. 3.Exploratory Research Laboratories Fujisawa Pharmaceutical Co., Ltd.Tsukuba IbarakiJapan

Personalised recommendations