Skip to main content

Relationships Between Experiment and Theory in the Study of Intermolecular Interactions

  • Chapter
Intermolecular Interactions

Abstract

Systematic knowledge of the types, geometries and strengths of a wide variety of noncovalent interactions is crucial in many areas, for example supramolecular chemistry, crystal engineering, protein-ligand docking and rational drug design. A crystal structure is the archetypal supermolecule and every structure provides direct experimental observations of the types and geometries of those intermolecular interactions that are responsible for molecular aggregation in the crystalline state. Geometrical data derived from, for example, the Cambridge Structural Database (CSD) of small molecule crystal structures,1 can provide systematic knowledge of frequencies of formation, dimensions and directional preferences exhibited by specific non-covalent bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.H. Allen, J.E. Davies, J.J. Galloy, O. Johnson, O. Kennard, C.F. Macrae, E.M. Mitchell, G.F. Mitchell, J.M. Smith and D.G. Watson, J. Chem. Inf. Comput. Sci. 31:187 (1991).

    Article  Google Scholar 

  2. I.C. Hayes and A.J. Stone, J. Mol. Phys. 53:83 (1984).

    Article  ADS  Google Scholar 

  3. I.J. Bruno, J.C. Cole, J.P.M. Lommerse, R.S. Rowland, R. Taylor and M.L. Verdonk, J. Computer-Aided Mol. Design., in press.

    Google Scholar 

  4. F.H. Allen, C.M. Bird, R.S. Rowland and P.R. Raithby, Acta Cryst. B53:696 (1997).

    Google Scholar 

  5. R.D. Amos, (1996). CADPAC6.0. The Cambridge Analytical Derivatives Package. Issue 6.0. A suite of quantum chemistry programs. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England.

    Google Scholar 

  6. J.P.M. Lommerse, A.J. Stone, R. Taylor and F.H. Allen, J. Am. Chem. Soc. 118:3108 (1996).

    Article  Google Scholar 

  7. A.J. Stone, Chem. Phys. Lett. 211:401 (1993).

    Article  ADS  Google Scholar 

  8. F.H. Allen, J.A.K. Howard and H. Amer, Acta Cryst. Section B, submitted.

    Google Scholar 

  9. W. Bolton, Acta Cryst. 18:5 (1965).

    Article  Google Scholar 

  10. J. Bernstein, M.D. Cohen and L. Leiserowitz, in: “The Chemistry of Quinonoid Compounds”, S. Patai, ed., 83–105, Wiley, London (1974).

    Google Scholar 

  11. H.-B. Bürgi, J.D. Dunitz and E. Shefter, Acta Cryst. B30:1517 (1974).

    Google Scholar 

  12. A. Gavezzotti, J. Phys. Chem. 94:4318 (1990).

    Article  Google Scholar 

  13. R. Taylor, A. Mullaley and G.W. Muffler, Pesticide Sci. 29:197 (1990).

    Article  Google Scholar 

  14. P.H. Maccallum, R. Poet and E.J. Milner-White, J. Mol. Biol. 248:361 (1995).

    Google Scholar 

  15. P.H. Maccallum, R. Poet and E.J. Milner-White, J. Mol. Biol. 248:374 (1995).

    Google Scholar 

  16. F.H. Allen, C.A. Baalham, J.P.M. Lommerse and P.R. Raithby, Acta Cryst. Section B, in press.

    Google Scholar 

  17. B. Rees, Acta Cryst. B26:1304 (1970).

    MathSciNet  Google Scholar 

  18. B. Rees, R. Haser and R. Weiss, Bull. Soc. Chim. Fr. p. 2568 (1966).

    Google Scholar 

  19. F.L. Hirshfeld and D. Rabinovich, Acta Cryst. 23:989 (1967).

    Article  Google Scholar 

  20. G.R. Desiraju, Angew. Chem. Int. Ed. Engl. 34:2311 (1995).

    Article  Google Scholar 

  21. F.H. Allen, B.S. Goud, V.J. Hoy, J.A.K. Howard and G.R. Desiraju, Chem. Commun. p. 2729 (1994).

    Google Scholar 

  22. V.R. Thalladi, B.S. Goud, V.J. Hoy, F.H. Allen, J.A.K. Howard and G.R. Desiraju, Chem. Commun. p. 401 (1996).

    Google Scholar 

  23. F.H. Allen, J.P.M. Lommerse, V.J. Hoy, J.A.K. Howard and G.R. Desiraju, Acta Cryst. B53:1006 (1997).

    Google Scholar 

  24. F.H. Allen, C.A. Baalham, J.P.M. Lommerse, P.R. Raithby and E. Sparr, Acta Cryst. B53:1017 (1997).

    Google Scholar 

  25. J.P.M. Lommerse, S.L. Price and R. Taylor, J. Comput. Chem. 18:757 (1997).

    Article  Google Scholar 

  26. G. Jones, P. Willett, R.C. Glen, A.R. Leach and R. Taylor, J. Mol. Biol. 267:727 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, F.H. (1998). Relationships Between Experiment and Theory in the Study of Intermolecular Interactions. In: Gans, W., Boeyens, J.C.A. (eds) Intermolecular Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4829-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4829-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7189-2

  • Online ISBN: 978-1-4615-4829-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics