Advertisement

Criteria for Species Delineation in the Ectothiorhodospiraceae

  • Stefano Ventura
  • Alessia Bruschettini
  • Luciana Giovannetti
  • Carlo Viti

Abstract

In a recent taxonomic revision of the family Ectothiorhodospiraceae [1], 16S rRNA analysis and coherent physiological properties were used to delineate two distinct genera, Ectothiorhodospira and Halorhodospira. Less halophilic species have been recognized as belonging to Ectothiorhodospira, while highly halophilic species have been assigned to Halorhodospira. Key features of the family Ectothiorhodospiraceae, and of the two genera belonging to it have been summarized in Table 1. Essentially on the basis of 16S rRNA sequence analysis, two new species of Ectothiorhodospira have been described and the existing species have been validated [1]. The family Ectothiorhodospiraceae, as presently defined, thus houses the species Ect. mobilis, Ect. shaposhnikovii, Ect. marina, Ect. maris-mortui, Ect. haloalkaliphila and Ect. vacuolata; Hlr. halophila, Hlr. halochloris and Hlr. abdelmalekii. However, there is still incoherence between this species subdivision and some phenotypic and genotypic traits described for strains of Ectothiorhodospiraceae. Moreover, it is a common understanding that taxonomic relationships among highly correlated bacteria cannot be determined on the sole basis of 16S rRNA sequence similarities [2,3]. In the present contribution, the taxonomic status of the Ectothiorhodospiraceae have been thus reconsidered integrating phenotypic and genotypic data taken from the literature with new experimental results recently obtained in our laboratory. The following characters have been considered. Salt concentration for optimal growth [4,5]; quinone composition [6,7]; fatty acid composition [5]; lipopolysaccharide composition [8,9]; porins [10]; G+C% content [5,11-16]; DNA reassociation [17]; 16S+23S rDNA RFLP (ribotype) [17]; ARDRA (see the Results section below); 16S rRNA sequence [1].

Keywords

Restriction Profile Species Delineation Halophilic Species Salt Optimum Genotypic Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imhoff, J.F. and Süling, J. (1996) Arch. Microbiol. 165, 106–113.PubMedCrossRefGoogle Scholar
  2. 2.
    Stackebrandt, E. and Goebel, B.M. (1994) Int. J. Syst. Bacteriol. 44, 846–849.CrossRefGoogle Scholar
  3. 3.
    Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt E., Starr, M.P. and Trüper, H.G. (1987) Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  4. 4.
    Ventura S., De Philippis R., Materassi, R. and Balloni, W. (1988) Arch. Microbiol. 149, 273–279.CrossRefGoogle Scholar
  5. 5.
    Thiemann, B. and Imhoff, J.F. (1996) Syst. Appl. Microbiol. 19, 223–230.CrossRefGoogle Scholar
  6. 6.
    Imhoff, J.F. (1984) FEMS Microbiol. Lett. 25, 85–89.CrossRefGoogle Scholar
  7. 7.
    Ventura S., Giovannetti L., Gori A., Viti, C. and Materassi, R. (1993) Syst. Appl. Microbiol. 16, 405–410.CrossRefGoogle Scholar
  8. 8.
    Meißner J., Borowiak D., Fischer, U. and Weckesser, J. (1988) Arch. Microbiol. 149, 245–248.CrossRefGoogle Scholar
  9. 9.
    Zahr M., Fobel B., Mayer H., Imhoff, J.F., Campos P.V. and Weckesser, J. (1992) Arch. Microbiol. 157, 499–504.Google Scholar
  10. 10.
    Wolf E., Zahr M., Benz R., Imhoff, J.F., Lustig A., Schiltz E., Stahl-Zeng, J. and Weckesser, J. (1996) Arch. Microbiol. 166, 169–175.PubMedCrossRefGoogle Scholar
  11. 11.
    Imhoff, J.F., Tindall, B.J., Grant, W.D. and Truper, H.G. (1981) Arch. Microbiol. 130, 238–242.CrossRefGoogle Scholar
  12. 12.
    Ivanova, T.L., Turova, T.P. and Antonov, A.S. (1985) Arch. Microbiol. 143, 154–156.CrossRefGoogle Scholar
  13. 13.
    Oren A., Kessel, M. and Stackebrandt, E. (1989) Arch. Microbiol. 151, 524–529.CrossRefGoogle Scholar
  14. 14.
    Truper, H.G. (1968) J. Bacteriol. 95, 1910–1920.PubMedGoogle Scholar
  15. 15.
    Mandel M., Leadbetter, E.R., Pfennig, N. and Truper, H.G. (1971) Int. J. Syst. Bacteriol. 21, 220–230.CrossRefGoogle Scholar
  16. 16.
    Matheron, R. (1976) PhD Thesis, Marseille, FranceGoogle Scholar
  17. 17.
    Ventura S., Viti, C, Pastorelli, R. and Giovannetti, L. (1998) Int. J. Syst. Bacteriol. (submitted)Google Scholar
  18. 18.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) J. Bacteriol. 173, 697–703.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Stefano Ventura
    • 1
    • 2
  • Alessia Bruschettini
    • 1
    • 2
  • Luciana Giovannetti
    • 1
    • 2
  • Carlo Viti
    • 2
  1. 1.Centro di Studio dei Microrganismi Autotrofi, CNRUniversità di FirenzeFirenzeItaly
  2. 2.Dipartimento di Scienze e Tecnologie Alimentari e MicrobiologicheUniversità di FirenzeFirenzeItaly

Personalised recommendations