An ABC Exporter is Essential for the Localisation of Envelope Material in Heterocysts of Cyanobacteria

  • Gabriele Fiedler
  • Matthias Arnold
  • Stefan Hannus
  • Iris Maldener


To perform oxygenic photosynthesis and fix dinitrogen simultaneously the filamentous cyanobacterium Anabaena sp. protects the extremely oxygen-sensitive nitrogenase by spatial separation of the two processes in two different cell types, the oxygen evolving vegetative cell and the N2-f?xing heterocyst. A thick envelope, consisting of heterocyst-specifíc glycolipids and polysaccharides, forms outside the gram-negative cell wall to reduce the diffusion of gases into the heterocyst and to establish a microaerobic environment tolerated by the nitrogenase [1]. Transposon mutagenesis of Anabaena7120 was used to create mutants that are arrested in different stages of heterocyst development [2]. One of these mutants, M7, is able to fix dinitrogen under anaerobic conditions (Fix+), but not under aerobic conditions (Fox-). This defect is due to an aberrant heterocyst envelope (Hen-) and an arrest in protoplast maturation, visible by lack of heterocyst-specifíc oxidation of diamino benzidine (Dab-) [3]. Maldener et al. (1994) [4] showed that the phenotype of mutant M7 was caused by transposition of Tn 1063a into the devAgene. Expression studies using luxABas reporter genes showed that about four hours after nitrogen stepdown devAexpression increases ca. 8 fold in whole filaments [4]. The deduced amino acid sequence of DevA shows striking similarity to the ATP-binding subunit of ABC transporters [5]. These are export and import systems common in bacteria and eukaryotes, catalysing an ATP-dependent transport of a great variety of substrates. Prokaryotic ABC transporters consist of several subunits that are organized in an operon [6].


Laminate Layer Anabaena Variabilis Envelope Material Hydropathy Profile Membrane Fusion Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolk, C.P. (1982) in Carr, N.G. and Whitton, B.A. (ed). The Biology of Cyanobacteria. Blackwell Scientific Publications Ltd., Oxford.Google Scholar
  2. 2.
    Wolk, C.P., Cai, Y. and Panoff, J.-M. (1991) Proc. Natl Acad.Sci. USA, 88, 535–5359.CrossRefGoogle Scholar
  3. 3.
    Ernst A., Black T., Cai, Y, Panoff, J.-M., Tiwari, D.N. and Wolk, C.P. (1992) J. Bacteriol., 174, 6025–6032.PubMedGoogle Scholar
  4. 4.
    Maldener I., Fiedler G., Ernst A., Fernández-Piñas, F. and Wolk, C.P. (1994) J. Bacteriol., 176, 7543–7549.PubMedGoogle Scholar
  5. 5.
    Higgins, C.F., Hyde, S.C., Mimmack, M.M., Gileadi U., Gill, D.R. and Gallagher, M.P. (1990) J. Bioen. Biomem., 22, 571–592.CrossRefGoogle Scholar
  6. 6.
    Ames, G. F.-L. (1986) Ann. Rev. Biochem., 55, 397–425.PubMedCrossRefGoogle Scholar
  7. 7.
    Dinh T., Paulsen, I.T. and Saier, M.H., JR (1994) J. Bacteriol., 176, 3825–3831.PubMedGoogle Scholar
  8. 8.
    Maniatis T., Fritsch, E.F. and Sambrook, J. (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  9. 9.
    Wolk, C.P., Vonshak A., Kehoe, P. and Elhai, J. (1984) Proc. Natl. Acad. Sci. USA, 81, 1561–1565.PubMedCrossRefGoogle Scholar
  10. 10.
    Cai, Y. and Wolk, C.P. (1990) J. Bacteriol., 179, 267–271.Google Scholar
  11. 11.
    Devereux J., Haeberli, P. and Smithies, O. (1984) Nucleic Acids Res., 12, 387–395.PubMedCrossRefGoogle Scholar
  12. 12.
    Black K., Buikema, W.J. and Haselkorn, R. (1995) J. Bacteriol., 177, 6440–6448.PubMedGoogle Scholar
  13. 13.
    Fiedler G., Arnold M., Hannus, S. and Maldener I., in preparation.Google Scholar
  14. 14.
    Black, T.A., Cai, Y and Wolk, C.P. (1993) Molec. Microbiol., 9, 77–84.CrossRefGoogle Scholar
  15. 15.
    Elhai J., and Wolk, C.P. (1988) Gene, 68, 119–138.PubMedCrossRefGoogle Scholar
  16. 16.
    Kerppola, R.E., Shyamala V. K., Klebba, P. and Ames, G.F.-L. (1991) J. Biol. Chem., 266, 9857–9864.PubMedGoogle Scholar
  17. 17.
    Winkenbach F., Wolk, C.P. and Jost, M. (1972) Planta, 107, 69–80.CrossRefGoogle Scholar
  18. 18.
    Murray, M.A. and Wolk, C.P. (1989) Arch. Microbiol., 151, 469–474.CrossRefGoogle Scholar
  19. 19.
    Létoffé, S., Ghigo, J.-M. and Wandersman, C. (1993) J. Bacteriol., 175, 7321–7328.PubMedGoogle Scholar
  20. 20.
    Létoffé, S., Delepelaire, P. and Wandersman, C. (1990) EMBO J., 9, 1375–1382.PubMedGoogle Scholar
  21. 21.
    Strathdee, C.A. and Lo, R.Y.C. (1989) J. Bacteriol., 171, 916–928.PubMedGoogle Scholar
  22. 22.
    Schulein R., Gentschev I., Mollenkopf, H.J. and Goebel, W. (1992). Mol. Gen. Genet., 234, 155–163.PubMedGoogle Scholar
  23. 23.
    Axelsson, L. and Hoeck, A. (1995) J. Bacteriol., 177, 2125–2137.PubMedGoogle Scholar
  24. 24.
    Guthmiller, J.M., Kraig E., Cagle, M.P. and Kolodrubetz, D. (1990) Nucleic Acids Res. 18, 5292.PubMedCrossRefGoogle Scholar
  25. 25.
    Giason, L., Mahanty, H.K. and Kolter, R. (1990) EMBO J., 9, 3875–3884.Google Scholar
  26. 26.
    Pavelka, M.S., Wright, L.F. and Silver, R.P. (1991) J. Bacteriol., 173, 4603–4610.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gabriele Fiedler
    • 1
  • Matthias Arnold
    • 1
  • Stefan Hannus
    • 1
  • Iris Maldener
    • 1
  1. 1.Lehrstuhl für Zellbiologie und PflanzenphysiologieUniversität RegensburgRegensburgGermany

Personalised recommendations