Advertisement

Transposition of Tn5 Derivatives in the Chromatically Adapting Cyanobacterium, Fremyella Diplosiphon

  • John Cobley
  • Lasika Seneviratne
  • Lisa Drong
  • Maya Thounaojam
  • Jeffrey F. Oda
  • Jennifer Carroll

Abstract

In the cyanobacteria a major fraction of the light used for photosynthesis is initially absorbed by the phycobiliproteins. These are highly pigmented proteins which are assembled together with colorless linker polypeptides into organelles called phycobilisomes. These organelles serve as light-harvesting antennae, and funnel exciton energy into the thylakoid membrane to which they are superficially attached. Within the thylakoid membrane cyanobacterial photosynthesis procedes by a mechanism similar to that in higher plants, viz. two photosystems containing chlorophyll awhich cooperate to oxidize water.

Keywords

Cyanobacterial Strain Chromatic Adaptation Hybrid Plasmid Restriction Barrier Plasmid Mobilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tandeau de Marsac, N. and Houmard, J. (1993) FEMS Microbiol. Rev. 104, 119–189.CrossRefGoogle Scholar
  2. 2.
    Grossman, A.R., Schaefer, M.R., Chiang, G.G. and Collier, J.L. (1993) Microbiol. Rev. 57, 725–749.PubMedGoogle Scholar
  3. 3.
    Mazel D., Guglielmi G., Houmard J., Sidler W., Bryant, D.A. and Tandeau de Marsac, N. (1986) Nucleic Acids Res. 14, 8279–8290.PubMedCrossRefGoogle Scholar
  4. 4.
    Houmard, J. (1994) Microbiology 140, 433–441.PubMedCrossRefGoogle Scholar
  5. 5.
    Sobczyk A., Bely A., Tandeau Marsac, N. and Houmard, J. (1994) Mol. Microbiol. 13, 875–885.PubMedCrossRefGoogle Scholar
  6. 6.
    Cobley, J.G., Zerweck, E. and Jaeger, H. (1987) Plant Physiol. (Bethesda) 83, 64 (suppl).Google Scholar
  7. 7.
    Cobley, J.G., Zerweck E., Reyes R., Mody A., Seludo-Unson, J.R., Jaeger H., Weerasuriya, S. and Navankasattusas, S. (1993) Plasmid 30, 90–105.PubMedCrossRefGoogle Scholar
  8. 8.
    Elhai, J. and Wolk, C. P. (1988) in: Cyanobacteria (Packer L., Glazer A., Eds) Methods in Enzymology pp. 747–754, Academic Press, San Diego.Google Scholar
  9. 9.
    Chiang, G.G., Schaefer, M.R. and Grossman, A.R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 9415–9419.PubMedCrossRefGoogle Scholar
  10. 10.
    Kehoe, D.M. and Grossman, A.R. (1996) Science 273, 1409–1412.PubMedCrossRefGoogle Scholar
  11. 11.
    ElhaI J., Vepritskiy A., MuroPastor, A.M., Flores, E. and Wolk, C.P. (1997) J. Bacteriol. 179, 1998–2005.PubMedGoogle Scholar
  12. 12.
    van den Hondel, C.A.M., van Leen, R.W., van Arkel, G.A., Duyvestyn, M. and de Waard, A. (1983) FEMS Microbiol. Lett. 16, 7–12.CrossRefGoogle Scholar
  13. 13.
    Prentki P., Binda, A. and Epstein, A. (1991) Gene 103, 17–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Guyer, M. (1983) in: Recombinant DNA Part C (Wu R., Grossman L., Moldave K., Eds) Methods in En-zymology vol. 101, pp. 363–369, Academic Press, San Diego.Google Scholar
  15. 15.
    Sherrat, D. (1991) Curr. Biol. 1, 192–194.CrossRefGoogle Scholar
  16. 16.
    Berg, D. E. (1989) in: Mobile DNA (Berg D. E., Howe M. M., editors) pp. 185–210, Am.Soc.Microbiol., Washington.Google Scholar
  17. 17.
    Borthakur, D. and Haselkorn, R. (1989) J. Bacteriol. 171, 5759–5761.PubMedGoogle Scholar
  18. 18.
    Wolk, C.P., Cai, Y.P. and Panoff, J.M. (1991) Proc. Natl. Acad. Sci. USA 88, 5355–5359.PubMedCrossRefGoogle Scholar
  19. 19.
    Liang J., Scappino, L. and Haselkorn, R. (1992) Proc. Natl. Acad. Sci. USA 89, 5655–5659.PubMedCrossRefGoogle Scholar
  20. 20.
    Wolk, C.P. (1991) Curr. Opin. Gen. Dev. 1, 336–341.CrossRefGoogle Scholar
  21. 21.
    Fernández-Piñas F., Leganes, F. and Wolk, C.P. (1994) J. Bacteriol. 176, 5277–5283.PubMedGoogle Scholar
  22. 22.
    Maldener I., Fiedler G., Ernst A., Fernández-Piñas, F. and Wolk, C.P. (1994) J. Bacteriol. 176, 7543–7549.PubMedGoogle Scholar
  23. 23.
    Cohen, M.J., Wallis, J.G., Campbell, E.L. and Meeks, J.C. (1994) Microbiology 140, 3233–3240.PubMedCrossRefGoogle Scholar
  24. 24.
    Khudyakov, I. and Wolk, C.P. (1996) J. Bacteriol. 178, 3572–3577.PubMedGoogle Scholar
  25. 25.
    Altschul, S.F., Gish W., Miller W., Myers, E.W. and Lipman, D.J. (1990) J. Mol. Biol. 215Google Scholar
  26. 26.
    Kahn K., Mazel D., Houmard J., Tandeau de Marsac, N. and Schaefer, M.R. (1997) J. Bacteriol. 179, 998–1006.PubMedGoogle Scholar
  27. 27.
    Mazel, D. and Marliere, P. (1989) Nature 341, 245–248.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • John Cobley
    • 1
  • Lasika Seneviratne
    • 1
  • Lisa Drong
    • 1
  • Maya Thounaojam
    • 1
  • Jeffrey F. Oda
    • 1
  • Jennifer Carroll
    • 1
  1. 1.Department of ChemistryUniversity of San FranciscoSan FranciscoUSA

Personalised recommendations