Energy-Dependent Regulation of Cyanobacterial and Chloroplast ATP Synthase

Studies on Synechocystis 6803 ATP Synthase with Mutations in Different Subunits
  • Hendrika S. van Walraven

Abstract

Cyanobacteria are prokaryotes with a high degree of structural and functional similarity to chloroplasts concerning the composition of their photosynthetic membranes (thy-lakoids [1]). This paper will deal with structure-function relations concerning the activity regulation of the ATP synthase, the terminal enzyme of photosynthetic and respiratory phosphorylation. The overall structure of the ATP synthase is essentially the same among various species. ATP synthesis and hydrolysis are catalysed by the F? part (Figure 1) and are linked to the transmembrane transport of protons catalysed by the F0 part, dissipating or generating a transmembrane proton gradient, respectively. The physiological role of cyanobacterial and chloroplast ATP synthase is primarily to make ATP; several mechanisms are present to prevent ATP hydrolysis as a waste of energy. In thylakoids from cyanobacteria several enzyme complexes, such as the ATP synthase, are shared for photosynthesis and respiration [2] and this has implications for its regulation

Keywords

Hydrolysis Sulfide Cysteine Respiration Serine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sherman L., Bricker T., Guikema, J. and Pakrasi, H. (1987) in: The Cyanobacteria (Fay, P. and van Balen, C. eds), pp. 1–53, Elsevier, Amsterdam.Google Scholar
  2. 2.
    Peschek, G.A. (1996) Biochem. Soc. Trans. 24, 729–733.PubMedGoogle Scholar
  3. 3.
    Junesch, U. and Gräber, P. (1987) Biochim. Biophys. Acta 893, 275–288.CrossRefGoogle Scholar
  4. 4.
    Gräber, P. (1994) Biochim. Biophys. Acta 1187, 171–176.CrossRefGoogle Scholar
  5. 5.
    Strotmann, H. and Bickel-Sandkötter, S. (1984) Annu. Rev. Plant Physiol. 35, 97–129.CrossRefGoogle Scholar
  6. 6.
    Nalin, CM. and McCarty, R.E. (1984) J. Biol. Chem. 259, 7257–7280.Google Scholar
  7. 7.
    Schumann J., Richter, M.L. and McCarty, R.E. (1985) J. Biol. Chem. 260, 11817–11823.PubMedGoogle Scholar
  8. 8.
    Bakels, R.H.A., van Walraven, H.S., van Wielink, J.E., Van der Zwet-de Graaff I., Krenn, B.E., Krab K., Berden, J.A. and Kraayenhof, R. (1994) Biochem. Biophys. Res. Commun. 201, 487–492.PubMedCrossRefGoogle Scholar
  9. 9.
    Bakels, R.H.A., van Wielink, J.E., Krab, K. and van Walraven, H.S. (1996) Arch. Biochem. Biophys. 332, 170–174.PubMedCrossRefGoogle Scholar
  10. 10.
    Werner S., Schumann, J. and Strotmann, H. (1990) FEBS Lett. 261, 204–208.PubMedCrossRefGoogle Scholar
  11. 11.
    van Walraven, H.S., Lutter, R. and Walker, J.E. (1993) Biochem. J. 294, 239–251.PubMedGoogle Scholar
  12. 12.
    Bakels, R.H.A., van Walraven, H.S., Scholts, M.J.C, Krab, K. and Kraayenhof, R. (1991) Biochim. Biophys. Acta 1058, 225–234.CrossRefGoogle Scholar
  13. 13.
    Krab K., Bakels, R.H.A., Scholts, M.J.C. and van Walraven, H.S. (1993) Biochim. Biophys. Acta 1141, 197–205.CrossRefGoogle Scholar
  14. 14.
    Scherer S., Almon, H. and Böger, P. (1988) Photosynth. Res. 15, 95–114.CrossRefGoogle Scholar
  15. 15.
    Lubberding, H.J. and Schroten, W. (1984) FEMS Microbiol. Lett. 22, 93–96.CrossRefGoogle Scholar
  16. 16.
    Turina, P. Rumberg B., Melandri, B.A. and Gräber, P. (1992) J. Biol. Chem. 267, 11057–11063.PubMedGoogle Scholar
  17. 17.
    Bakels, R.H.A., van Walraven, H.S., Krab, K. Scholts, M.J.C. and Kraayenhof, R. (1993) Eur. J. Biochem. 213, 957–964.PubMedCrossRefGoogle Scholar
  18. 18.
    Steinemann, D. and Lill, H. (1995) Biochim. Biophys. Acta 1230, 86–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Werner-Grüne S., Gunkel D., Schumann, J. and Strotmann, H. (1994) Mol. Gen. Genet. 244, 144–150.PubMedCrossRefGoogle Scholar
  20. 20.
    Scholts, M.J.C, Aardewijn, P. and van Walraven, H.S. (1996) Photosynth. Res. 47, 301–305.CrossRefGoogle Scholar
  21. 21.
    Krenn, B.E., Aardewijn P., van Walraven, H.S., Werner-Grüne S., Strotmann, H. and Kraayenhof, R. (1995) Biochem. Soc. Trans. 23, 757–760.PubMedGoogle Scholar
  22. 22.
    Krenn, B.E., Strotmann H., van Walraven, H.S., Scholts, M.J.C. and Kraayenhof, R. (1997) Biochem. J. 322, 841–845.Google Scholar
  23. 23.
    Ross, S.A., Zhang, M.X. and Selman, B.R. (1995) J. Biol. Chem. 270, 9813–9818.PubMedCrossRefGoogle Scholar
  24. 24.
    Fillingame, R.H. (1992) J. Bioenerg. Biomembr. 24, 485–491.PubMedCrossRefGoogle Scholar
  25. 25.
    van Walraven, H.S., Strotmann H., Schwarz, O. and Rumberg, B. (1996) FEBS Lett. 379, 309–313.PubMedCrossRefGoogle Scholar
  26. 26.
    van Walraven, H.S., Scholts, M.J.C, Koppenaal F., Bakels, R.H.A. and Krab, K. (1990) Biochim. Biophys. Acta 1015, 425–434.CrossRefGoogle Scholar
  27. 27.
    van Walraven, H.S., Hollander, E.E., Scholts, M.J.C and Kraayenhof, R. (1997) Biochim. Biophys. Acta 1318, 217–224.CrossRefGoogle Scholar
  28. 28.
    Krenn, B.E., van Walraven, H.S., Scholts, M.J.C. and Kraayenhof, R. (1993) Biochem. J. 294, 705–709.PubMedGoogle Scholar
  29. 29.
    Krulwich, T.A. and Guffanti, A.A. (1992) J. Bioenerg. Biomembr. 24, 587–599.PubMedCrossRefGoogle Scholar
  30. 30.
    Lill, H. and Nelson, N. (1991) Plant Mol. Biol. 17, 641–652.PubMedCrossRefGoogle Scholar
  31. 31.
    van Walraven, H.S. and Bakels, R.H.A. (1996) Physiol. Plant. 96, 526–532.CrossRefGoogle Scholar
  32. 32.
    Lill H., Hensel F., Junge, W. and Engelbrecht, S. (1996) J. Biol. Chem. 271, 32737–32742.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Hendrika S. van Walraven
    • 1
  1. 1.Department of Biomolecular Complexity and Dynamics (BCD) Institute for Molecular Biological Sciences (IMBW) BioCentrum AmsterdamVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations