Membrane-Associated C-Type Cytochromes of Rhodobacter Capsulatus Involved in Photosynthesis and Respiration

  • Hannu Myllykallio
  • Hans-Georg Koch
  • Fevzi Daldal

Abstract

Purple nonsulfur facultative phototrophs, e.g. Rhodobacterspecies (Rhodobacter capsulatusand Rhodobacter sphaeroides) provide excellent model systems for studying the structure, function, regulation and biogenesis of cytochrome (cyt) complexes involved in photosynthesis (Ps) and respiration (Res). In these species Ps electron transport pathway is cyclic. It involves the photochemical reaction center (RC) and the ubihydroquinone: cyt coxidoreductase (also called the cyt bc 1 complex) connected to each other by c-type cyts and the ubihydroquinone (UQ) pool (Figure 1). On the other hand, the Res pathways are often branched at the UQ pool and contain several terminal oxidases thought to work at different oxygen tensions. R. capsulatushas a quinol oxidase (Qox) and a cyt coxidase (Cox) of cbb 3 -typewhile R. sphaeroidesalso has an additional cyt coxidase of aa 3-ty?e (Figure 1). These electron transport components are involved in production of energy which is essential for cell survival. They are responsible for translocation of protons across the cellular membrane to produce a proton gradient which is then used for ATP synthesis. Because of their crucial importance for life they are often multiplicated with overlapping roles, so that the absence of any one of them, although restrictive under some growth modes, is rarely lethal for the organism. Most of the energy transduction complexes contain c-type cyts which are attached to the cytoplasmic membrane with their co-valently bound heme groups facing the periplasm.

Keywords

Tyrosine Respiration Carboxyl Proline Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, E.A., Zhang Z., Huang, L.S., Chi, Y-I., and S-H. Kim, 1997. Biophysical Journal A. p. 21Google Scholar
  2. Bott M., Ritz D., and H. Hennecke. 1991. J. Bacteriol. 173:6766–6772.PubMedGoogle Scholar
  3. Daldal, F. 1988. J. Bacteriol. 170:2388–2391PubMedGoogle Scholar
  4. Daldal F., Cheng S., Applebaum J., Davidson E., and R. C. Prince. 1986. Proc. Natl. Acad. Sci. U.S.A. 83:2012–2016.PubMedCrossRefGoogle Scholar
  5. Donohue, T.J., McEwan, A.G., van Doren, S. and A. C. Crofts. 1988. Biochemistry 27: 1918–1925PubMedCrossRefGoogle Scholar
  6. Garcia-Horsman A., E. Berry, J.P. Shapleigh, J.O. Alben, and R.B. Gennis. 1994. Biochemistry 33:3113–3119.PubMedCrossRefGoogle Scholar
  7. de Gier, J.-W., M. Schepper., W.N.M. Reijnders, S.J. van Dyck, DJ. Slotboom, A. Warne, M. Saraste, K. Kraab, M. Finel, A.H. Stouthamer, R.J.M. van Spanning, and J. van der Oost. 1996. Mol Microbiol. 20:1247–1260PubMedCrossRefGoogle Scholar
  8. Gray K. A., E. Davidson and F. Daldal. 1992. Biochemistry 31:11864–11873.PubMedCrossRefGoogle Scholar
  9. Gray, K.A., M. Grooms, H. Myllykallio, C. Moomaw, C. Slaughter, and F. Daldal. 1994. Biochemistry 33:3120–3127.PubMedCrossRefGoogle Scholar
  10. Hochkoeppler A., Jenney F. E., Lang S. E., Zannoni D., and F. Daldal. 1995. J. Bacteriol. 177:608–613.PubMedGoogle Scholar
  11. Jenney F. E., and F. Daldal. 1993. EMBO J. 12:1283–1292.PubMedGoogle Scholar
  12. Jenney F. E., Prince R. C., and F. Daldal. 1994. Biochemistry 33:2496–2502.PubMedCrossRefGoogle Scholar
  13. Jenney, F.E., Prince, R.C., and F. Daldal. 1996. Biochim. Biophys. Acta 1273:159–164PubMedCrossRefGoogle Scholar
  14. Keilin, D. 1966. The history of cell respiration and cytochrome. Cambridge University Press, Cambridge.Google Scholar
  15. Klemme, J.-H., and H.G. Schlegel. 1969. Arch. Mikrobiol. 68: 326–354.PubMedCrossRefGoogle Scholar
  16. Koch, H.-G., Hwang O., and F. Daldal. 1997. J. Bacteriol., submittedGoogle Scholar
  17. Marrs B. L., and H. Gest. 1973. J. Bacteriol. 114:1045–1051.PubMedGoogle Scholar
  18. Moser, C. C. and P. L. Dutton. 1988. Biochemistry. 27:2450–2461.PubMedCrossRefGoogle Scholar
  19. Martinez S. E., D. Huang, A. Szczepaniak, W. A. Cramer and J. L. Smith. 1994. Structure 2: 95–105PubMedCrossRefGoogle Scholar
  20. Myllykallio H., Jenney F. E., Moomaw C. R., Slaughter, C. A., & Daldal, F. 1997. J. Bacteriol 179:2623–2631.PubMedGoogle Scholar
  21. Overfield, R. E. and C. A. Wraight. 1980. Biochemistry 19:3322–3327.Google Scholar
  22. Preisig O., D. Anthamatten, and H. Hennecke. 1993. Proc. Natl. Acad. Sc. USA 90: 3309–3313.CrossRefGoogle Scholar
  23. Preisig O., R. Zufferey, L. Thöny-Meyer, C. Appleby, and H. Hennecke. 1996. J. Bacteriol. 178:1532–1538.PubMedGoogle Scholar
  24. Prince R. C., Davidson E., Haith C. E., and F. Daldal. 1986. Biochemistry 25: 5208–5214.CrossRefGoogle Scholar
  25. Solioz M., and Vulpe, C. 1996. TIBS 21: 237–241PubMedGoogle Scholar
  26. Tiede, D. M. and P. L. Dutton. 1993 In “The Photosynthetic Reaction Center.” Vol. 1, pp. 257–288. Academic Press. New York.CrossRefGoogle Scholar
  27. Thöny-Meyer, L, C. Beck, O. Preisig, and H. Hennecke. 1994. Mol. Micro. 174:705–716.CrossRefGoogle Scholar
  28. Turba A., Jetzek M., and B. Ludwig. 1995. Eur. J. Biochem. 231:259–265.PubMedGoogle Scholar
  29. Wang J., K.A. Gray, F. Daldal, and D.L. Rousseau. 1995. J. Am. Chem. Soc. 117:9363–9364.CrossRefGoogle Scholar
  30. Zannoni D., R.E. Blankenship, M.T. Madigan and C.E. Bauer (Eds.), 1995. In Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  31. Xie D., C-A Yu, H. Kim, J-Z. Xia, A. Kachurin, L. Zhang, L. Yu and J. Deisenhofer. 1997. Science 277: 60–66.CrossRefGoogle Scholar
  32. Zeilstra-Ryalls, J.H., and S. Kaplan. 1995. J. Bacteriol. 177:6422–6431.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Hannu Myllykallio
    • 1
  • Hans-Georg Koch
    • 1
  • Fevzi Daldal
    • 1
  1. 1.Department of Biology Plant Science InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations