The Homodimeric Reaction Center of Chlorobium

  • Christine Hager-Braun
  • Rainer Zimmermann
  • Günter Hauska

Abstract

Chlorobiaceae, the green sulfur bacteria are strict anaerobes, adapted to photosynthesis in dim light. The special organization of their photosynthetic apparatus as depicted schematically in Fig. 1. Light is efficiently captured in huge antennae, the chlorosomes1, which contain thousands of bacteriochlorophylls c or d in tubular stacks, and are located on the inner surface of the cell membrane. The excitation energy is transferred from the BChl c or d stacks absorbing maximally around 750 nm, via BChl a in chlorosomes and in the FMO-protein1, 2 absorbing around 800 nm, to the P840-RC in the membrane. Energy transfer from the chlorosomes3, as well as through BChl a 4 is quenched under oxidizing conditions-a redox control which protects the organism from damage by oxygen. Chlorosomes are elsewhere found only in the Chloroflexaceae 1.

Keywords

Sulfide Chlorophyll Urea Chrome Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blankenship RE, Olson JM and Miller M (1995) in: Anoxygenic Photosynthetic Bacteria (Blankenship RE, Madigan MT and Bauer CE eds.) pp 399–435, Kluwer Acad.Publ.Google Scholar
  2. 2.
    Olson JM (1980) Biochim.Biophys. Acta 594: 33–51PubMedCrossRefGoogle Scholar
  3. 3.
    Wang J, Brune DC and Blankenship RE (1990) Biochim.Biophys. Acta 1015: 457–463PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou W, LoBrutto R, Lin S and Blankenship RE (1994) Photosynth. Res. 41: 89–96PubMedCrossRefGoogle Scholar
  5. 5.
    Woese CR (1987) Microbiol. Reviews 51: 221–271Google Scholar
  6. 6.
    Blankenship RE (1992) Photosynth. Res. 33: 91–111PubMedCrossRefGoogle Scholar
  7. 7.
    Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992) Proc. Natl. Acad. Sci. USA 83: 8135–8139CrossRefGoogle Scholar
  8. 8.
    Liebl U, Mockenstorm-Wilson M, Trost JT, Bruce DC, Blankenship RE and Vermaas W (1993) Proc. Natl. Acad. Sci. USA 7124–7128Google Scholar
  9. 9.
    Rigby SEJ, Thapar R, Evans MCW and Heathcote P (1994) FEBS Lett. 330: 24–28CrossRefGoogle Scholar
  10. 10.
    Huber M (1997) Photosynth. Res. 52: 1–26CrossRefGoogle Scholar
  11. 11.
    Feiler U, Albouy D, Robert B and Mattioli TA (1995) Biochemistry 34: 11099–11105PubMedCrossRefGoogle Scholar
  12. 12.
    Feiler U, Albouy D, Porcet C, Mattioli TA, Lutz M and Robert B (1994) Biochemistry 33: 7594–7599PubMedCrossRefGoogle Scholar
  13. 13.
    Plato M, Möbius K, Michel-Beyerle ME, Bixon M and Jortner J (1988) J. Am. Chem. Soc. 110: 7279–7285CrossRefGoogle Scholar
  14. 14.
    Feiler U and Hauska G (1995) in: Anoxygenic Photosynthetic Bacteria (Blankenship RE, Madigan MT and Bauer CE eds.) pp 665–685, Kluwer Acad. Publ.Google Scholar
  15. 15.
    Nitschke W and Lockau W (1993) Physiologia Plantarum 88: 372–381CrossRefGoogle Scholar
  16. 16.
    Golbeck JH (1994) Proc. Natl. Acad. Sci. USA 90: 1642–1646CrossRefGoogle Scholar
  17. 17.
    Sakurai H, Kusumoto N and Inoue K (1996) Photochem. Photobiol. 64: 5–13CrossRefGoogle Scholar
  18. 18.
    Kusai K and Yamanaka T (1973) Biochim. Biophys. Acta 325: 304–314PubMedCrossRefGoogle Scholar
  19. 19.
    Shahak Y, Arieli A, Padan E and Hauska G (1992) FEBS Lett. 299: 127–130PubMedCrossRefGoogle Scholar
  20. 20.
    Klughammer C, Hager C, Padan E, Schütz M, Schreiber U, Shahak Y and Hauska G (1995) Photosynth. Res. 43: 27–34CrossRefGoogle Scholar
  21. 21.
    Nujis AM, Vasmel H, Joppe HLP, Duysens LNM and Amesz J (1985) Biochim. Biophys. Acta 807: 24–34CrossRefGoogle Scholar
  22. 22.
    Nitschke W, Feiler U and Rutherford AW (1990) Biochemistry 29: 3834–3842PubMedCrossRefGoogle Scholar
  23. 23.
    Schoeder H-U and Lockau W (1986) FEBS Lett. 199: 23–27CrossRefGoogle Scholar
  24. 24.
    Ostafin AE and Weber S (1997) Biochim. Biophys. Acta 1320: 195–207CrossRefGoogle Scholar
  25. 25.
    Frankenberg N, Hager-Braun C, Feiler U, Fuhrmann M, Rogl H, Schneebauer N, Nelson N and Hauska G (1996) Photochem. Photobiol. 64: 14–19CrossRefGoogle Scholar
  26. 26.
    Hurt EC and Hauska G (1984) FEBS Lett. 168: 149–154CrossRefGoogle Scholar
  27. 27.
    Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) Arch. Microbiol. 156: 81–90CrossRefGoogle Scholar
  28. 28.
    Hager-Braun C, Xie D-L, Jarosch U, Herold E, Büttner M, Zimmermann R, Deutzmann R, Hauska G and Nelson N (1995) Biochemistry 34: 9617–9624PubMedCrossRefGoogle Scholar
  29. 29.
    Nelson N, Nelson H and Racker E (1972) Photochem. Photobiol. 16: 481–489PubMedCrossRefGoogle Scholar
  30. 30.
    Kusumoto N, Inoue K and Sakurai H (1995) Photosynth. Res. 43: 107–112CrossRefGoogle Scholar
  31. 31.
    Oh-Oka H, Kamei S and Matsubara H (1995) FEBS Lett. 365: 30–34PubMedCrossRefGoogle Scholar
  32. 32.
    Oh-Oka H, Kakutani S, Kamei S, Matsubara H, Iwaki M and Itoh S (1995) Biochemistry 34: 13091–13097PubMedCrossRefGoogle Scholar
  33. 33.
    Kjaer B and Scheller H-V (1996) Photosynth. Res. 47: 33–39CrossRefGoogle Scholar
  34. 34.
    Francke C, Permentier HP, Franken EM, Neerken S and Amesz J (1997) Biochemistry, in pressGoogle Scholar
  35. 35.
    Chitnis PR, Xu Q, Chitnis VP and Nechushtai R (1995) Photosynth. Res. 44: 23–40CrossRefGoogle Scholar
  36. 36.
    Hunger N, Xie D-L, Hauska G and Nelson N (1994) Photosynth. Res. 38: 111–114Google Scholar
  37. 37.
    Hager-Braun C (1997) thesis, university of Regensburg/ GermanyGoogle Scholar
  38. 38.
    Kruip J, Chitnis PR, Lagoutte B, Rügner M and Boekema EJ (1997) J. Biol. Chem. 272: 17061–17069PubMedCrossRefGoogle Scholar
  39. 39.
    Tsiotis G, Hager-Braun C, Woplensinger B, Engel A and Hauska G (1997) Biochim. Biophys. Acta, in pressGoogle Scholar
  40. 40.
    Kruip J, Bald E, Boekema E and Rögner M (1994) Photosynth. Res. 40: 279–286CrossRefGoogle Scholar
  41. 41.
    Stanier RY and Smith JH (1960) Biochim. Biophys. Acta 41: 478–484PubMedCrossRefGoogle Scholar
  42. 42.
    Olson JM, Giddings H and Shaw EK (1980) Biochim. Biophys. Acta 449: 197–208Google Scholar
  43. 43.
    McKinney G (1941) J. Biol. Chem. 140: 315–321Google Scholar
  44. 44.
    Young AJ (1993) in: Carotenoids in Photosynthesis (Young AJ and Britton G eds.) pp 16–71, Chapman & Hall, LondonCrossRefGoogle Scholar
  45. 45.
    Albouy D, Joliot P, Robert B and Nitschke W (1997) Eur. J. Biochem. 249: 630–636PubMedCrossRefGoogle Scholar
  46. 46.
    Hager-Braun C, Jarosch U, Hauska G, Nitschke W and Riedel A (1997) Photosynth. Res. 51: 127–136CrossRefGoogle Scholar
  47. 47.
    Nitschke W, Feiler U and Rutherford AW (1990) Biochemistry 29: 3834–3842PubMedCrossRefGoogle Scholar
  48. 48.
    Okkels JS, Kjaer B, Hansson O, Swendsen I, Lindberg-Moeller B and Scheller H-V (1992) J. Biol. Chem. 267: 21139–21145PubMedGoogle Scholar
  49. 49.
    Dracheva S, Williams J-A and Blankenship RE (1992) in: Research in Photosynthesis (Murata N ed.) Vol I, pp 53-56, Kluwer Acad. Publ.Google Scholar
  50. 50.
    Zimmermann R (1997) thesis, university of Regensburg/ GermanyGoogle Scholar
  51. 51.
    Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Nature Struct. Biol. 3: 965–973PubMedCrossRefGoogle Scholar
  52. 52.
    Schubert W-D, Klukas O, Krauß N, Saenger W, Fromme P and Witt HT (1997) J. Mol. Biol. 272: 741–769PubMedCrossRefGoogle Scholar
  53. 53.
    Rhee KH, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Nature 389: 522–526CrossRefGoogle Scholar
  54. 54.
    Mehari T, Qiao F, Scott MP, Nellis DF, Zhao J, Bryant DA and Golbeck JH (1995) J. Biol. Chem. 270: 28108–28117PubMedCrossRefGoogle Scholar
  55. 55.
    Fischer N, Setif P and Rochaix J-D (1997) Biochemistry 36: 93–102PubMedCrossRefGoogle Scholar
  56. 56.
    Mehari T, Parrett KG, Warren PV and Golbeck JH (1991) Biochim. Biophys. Acta 1056: 139–14857) Bittl R, Zech SG, Fromme P, Witt HT and Lubitz W (1997) Biochemistry 36: 12001-12004CrossRefGoogle Scholar
  57. 58.
    Brettel K (1997) Biochim. Biophys. Acta 1318: 322–373CrossRefGoogle Scholar
  58. 59.
    Hauska G (1988) Trends. Biochem. Sci. 13: 415–416PubMedCrossRefGoogle Scholar
  59. 60.
    van der Est A, Hager-Braun C, Leibl W, Hauska G and Stehlik D (1998) in preparationGoogle Scholar
  60. 61.
    Kleinherenbrink FAM, Ikegami I, Hiraishi A, Otte SCM and Amesz J (1993) Biochim. Biophys. Acta 1142: 69–73CrossRefGoogle Scholar
  61. 62.
    Trost JT and Blankenship RE (1989) Biochemistry 28: 9898–9904PubMedCrossRefGoogle Scholar
  62. 63.
    van der Est A, Prisner T, Bittl R, Fromme P, Lubitz W, Möbius K and Stehlik D (1997) J. Phys. Chem. B 101: 1437–1443CrossRefGoogle Scholar
  63. 64.
    Rustandi RR, Snyder SW, Biggins J, Norris JR and Thurnauer MC (1992) Biochim. Biophys. Acta 1101: 311–320CrossRefGoogle Scholar
  64. 65.
    Bryant DA (1994) Photosynth. Res. 41: 27–28CrossRefGoogle Scholar
  65. 66.
    Amann E, Ochs B and Abel K-J (1988) Gene 69: 301–315PubMedCrossRefGoogle Scholar
  66. 67.
    Fish LE, Kück U and Bogorad L (1985) J. Biol. Chem. 260: 1413–1421PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Christine Hager-Braun
    • 1
  • Rainer Zimmermann
    • 1
  • Günter Hauska
    • 1
  1. 1.Lehrstuhl für Zellbiologie und PflanzenphysiologieUniversität RegensburgRegensburgGermany

Personalised recommendations