Skip to main content

Biosynthesis of Phycobiliproteins in Cyanobacteria

  • Chapter
The Phototrophic Prokaryotes

Abstract

The characteristic blue-green and red colors of cyanobacteria and red algae reflect the presence of their water-soluble, light-harvesting antenna complexes called phycobilisomes. Phycobiliproteins are the major components of these complexes and can represent 40-50% of the total protein of cyanobacterial cells cultured under low light. 1 Each phycobiliprotein consists of two different polypeptide chains, α (~17 kDa) and β (~18 kDa), each of which carries at least one (and up to 3) covalently attached phycobilins. 1, 2 Phycobiliproteins are frequently isolated as (αβ)3 or as (αβ)6 hexameric complexes. The assembly of the phycobiliproteins into phycobilisomes is mediated by their interaction with specific linker polypeptides which also modulate the spectroscopic properties of the phycobiliproteins. 3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glazer, A. N. (1989) J. Biol. Chem. 264: 1–4.

    PubMed  CAS  Google Scholar 

  2. Ong L. J., and Glazer, A. N. (1991) J. Biol. Chem. 266, 9515–9527

    PubMed  CAS  Google Scholar 

  3. Glazer, A. N. (1984) Biochim. Biophys. Acta 768, 29–51

    Article  CAS  Google Scholar 

  4. Duerring M., Schmidt, G.B. and Huber, R., (1991) J. Molec. Biol. 217, 577–592

    Article  PubMed  CAS  Google Scholar 

  5. Ficner R., Lobeck K., Schmidt, G. and Huber, R., (1992) J. Molec. Biol. 228, 935–950

    Article  PubMed  CAS  Google Scholar 

  6. Brejc K., Ficner R., Huber, R. and Steinbacher, S., 1995 J. Mol. Biol. 249: 424–440

    Article  PubMed  CAS  Google Scholar 

  7. Schirmer T., Huber R., Schneider M., Bode W., Miller M., and Hackert, M. L. (1986) J. Mol. Biol. 188: 651–676

    Article  PubMed  CAS  Google Scholar 

  8. Glazer, A.N. (1994) Advances in Molecular and Cell Biology 10, 119–149

    Article  CAS  Google Scholar 

  9. Glazer, A. N. (1988) Meth. Enzymol. 167, 291–303

    Article  PubMed  CAS  Google Scholar 

  10. Schmid R., and McDonagh, A. F. (1978) in The Metabolic Basis of Inherited Disease (Stanbury, J.B. and Wyngaarden, J.B., eds) pp. 1221–1257, McGraw Hill, New York

    Google Scholar 

  11. Terry M. J., and Lagarias, J. C. (1991) J. Biol. Chem. 266, 22215–22221

    PubMed  CAS  Google Scholar 

  12. Terry M. J., and McDowell M. T., and Lagarias, J. C. (1995) J. Biol. Chem. 270, 11111–11118

    Article  PubMed  CAS  Google Scholar 

  13. Lagarias, J. C. and Rapoport, L. H. (1980) J. Am. Chem. Soc. 102, 4821–4828

    Article  CAS  Google Scholar 

  14. Furuya, M. (1993) Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 617–645

    Article  CAS  Google Scholar 

  15. Quail P. H., Boyla M. T., Parks B. M., Short T. W., Xu Y., and Wagner, D. (1995) Science 268, 675–680

    Article  PubMed  CAS  Google Scholar 

  16. Beale S. I., and Cornejo, J. (1983) Arch. Biochem. Biophys. 227, 279–286

    Article  PubMed  CAS  Google Scholar 

  17. Beale S. I., and Cornejo, J. (1984) Plant Physiol. 76, 7–15

    Article  PubMed  CAS  Google Scholar 

  18. Beale S. I., and Cornejo, J. (1984) Arch. Biochem. Biophys. 235, 371–384

    Article  PubMed  CAS  Google Scholar 

  19. Beale S. I., and Cornejo, J. (1991) J. Biol. Chem. 266, 22328–22332

    PubMed  CAS  Google Scholar 

  20. Beale S. I., and Cornejo, J. (1991) J. Biol. Chem. 266, 22333–22340

    PubMed  CAS  Google Scholar 

  21. Beale S. I., and Cornejo, J. (1991) J. Biol. Chem. 266, 22341–22345

    PubMed  CAS  Google Scholar 

  22. Rhie G., and Beale, S. I. (1992) J. Biol. Chem. 267, 16088–16093

    PubMed  CAS  Google Scholar 

  23. Rhie G., and Beale, S. I. (1995) Arch. Biochem. Biophys. 320, 182–194

    Article  PubMed  CAS  Google Scholar 

  24. Troxler R. F., Lin S., and Offner, G. D. (1989) J. Biol. Chem. 264, 20596–20601

    PubMed  CAS  Google Scholar 

  25. Lin S., Offner G. D., and Troxler, R. F. (1990) Plant Physiol. 93, 772–777

    Article  PubMed  CAS  Google Scholar 

  26. Rhie G., and Beale, S. I. (1994) J. Biol. Chem. 269, 9620–9626

    PubMed  CAS  Google Scholar 

  27. Gossauer A., Nydegger F., Benedikt E., and Köst, H.-P. (1989) Helv. Chim. Acta. 72, 518–529

    Article  CAS  Google Scholar 

  28. Wu, S.-H., McDowell, M. T, and Lagarias, J. C. (1997) J. Biol. Chem. In press

    Google Scholar 

  29. Fairchild C. D., and Glazer, A. N. (1994) J. Biol.Chem. 269, 8686–8694.

    PubMed  CAS  Google Scholar 

  30. Arciero D. M., Dallas J. L., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18358–18363

    PubMed  CAS  Google Scholar 

  31. Kidd D. G., and Lagarias, J. C. (1990) J. Biol. Chem. 265, 7029–7033

    PubMed  CAS  Google Scholar 

  32. Wilde A., Churin Y., Schubert H., and Börner, T. (1997) FEBS Lett. 406, 89–92

    Article  PubMed  CAS  Google Scholar 

  33. Kehoe D., and Grossman, A. (1996) Science 273, 1409–1412

    Article  PubMed  CAS  Google Scholar 

  34. Cornejo J., and Beale, S. I. (1997) Photosyn. Res. 51, 223–230

    Article  CAS  Google Scholar 

  35. Cole W. J., Chapman D. J., and Siegelman, W. H. (1967) J. Am. Chem. Soc. 89, 3643–3645

    Article  CAS  Google Scholar 

  36. Rudiger W., Brandlmeier T., Blos I., Gossauer A., Weller, J.-P. (1980) Z. Naturforsch. 35c, 763–769

    Google Scholar 

  37. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., and Tabata, S. (1996) DNA Res. 3, 109–136

    Article  PubMed  CAS  Google Scholar 

  38. Knaff D. B., and Hirosawa, M. (1991) Biochim. Biophys. Acta 1056, 92–125

    Google Scholar 

  39. Karplus P. A., and Bruns, C. M. (1994) J. Bioenerg. Biomemb. 26, 89–99

    Article  CAS  Google Scholar 

  40. Schluchter W. M., and Glazer, A. N. (1997) J. Biol. Chem. 272, 13562–13569

    Article  PubMed  CAS  Google Scholar 

  41. Terry M. J., Maines M. D., and Lagarias, J. C. (1993) J. Biol. Chem. 268, 26099–26106

    PubMed  CAS  Google Scholar 

  42. Lagarias D. M., Crepeau, M. W, Maines M. D., and Lagarias, J. C. (1997) Plant Cell 9, 675–688

    PubMed  CAS  Google Scholar 

  43. Stocker R., Yamamoto, Y, McDonagh A. F., Glazer A. N., and Ames, B. N. (1987) Science 235, 1043–1046

    Article  PubMed  CAS  Google Scholar 

  44. Dennery, P.A., McDonagh, A.F., Spitz, D.R., Rodgers, P.A., and Stevenson, D.K. (1995) Free Radical Biol. Med. 19, 395–404

    Article  CAS  Google Scholar 

  45. Arciero D. M., Bryant D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343–18349.

    PubMed  CAS  Google Scholar 

  46. Arciero D. M., Dallas J. L., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18350–18357.

    PubMed  CAS  Google Scholar 

  47. Fairchild C. D., Zhao J., Zhou, J. Colson S. E., Bryant D. A., and Glazer, A. N. (1992) Proc. Nat. Acad. Sci. 89, 7017–7021

    Article  PubMed  CAS  Google Scholar 

  48. Fairchild, C. D. and Glazer, A. N. (1994) J. Biol. Chem. 269, 28988–28996

    PubMed  CAS  Google Scholar 

  49. Zhou J., Gasparich G. E., Stirewalt V. L., deLorimier R., and Bryant, D. A. (1992) J. Biol. Chem. 267, 16138–16145

    PubMed  CAS  Google Scholar 

  50. Swanson R. V., Zhou J., Leary J. A., Williams T., de Lorimier R., Bryant D. A., and Glazer, A. N. (1992). J. Biol. Chem. 267, 16146–16154

    PubMed  CAS  Google Scholar 

  51. Bhalerao R. P., Kind L. K., and Gustafsson, P. (1994) Plant Mol. Biol. 26, 313–326

    Article  PubMed  CAS  Google Scholar 

  52. Tandeau de Marsac N., Mazel D., Capuano V., Damerval T., Houmard, J. (1990) In Molecular Biology of Membrane-Bound Complexes in Phototropic Bacteria, (Drews, D. and Dawes E. A., eds) pp 143–153, Plenum, NY

    Google Scholar 

  53. Jung L. J., Chan C. F., and Glazer, A. N. (1995) J. Biol. Chem. 270, 12877–12884

    PubMed  CAS  Google Scholar 

  54. Wilbanks S. M., and Glazer, A. N. (1993) J. Biol. Chem. 268, 1226–1235

    PubMed  CAS  Google Scholar 

  55. Kahn K., Mazel D., Houmard J., Tandeau de Marsac N., and Schaefer, M. R. (1997) J. Bacteriol. 179, 998–1006

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schluchter, W.M., Glazer, A.N. (1999). Biosynthesis of Phycobiliproteins in Cyanobacteria. In: Peschek, G.A., Löffelhardt, W., Schmetterer, G. (eds) The Phototrophic Prokaryotes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4827-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4827-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7188-5

  • Online ISBN: 978-1-4615-4827-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics