The Application of Vesicular Arbuscular Mycorrhizal Fungi in Afforestation

  • M. Kaur
  • K. G. Mukerji


Desertification is a natural and dynamic process which claims millions of hectares of land annually. In addition to natural environmental factors such as impoverished soils, extreme temperatures, erratic rainfall and high wind velocity, anthropogenic activities such as deforestation, poor agricultural practices, mining, overgrazing and recreational activities create vast stretches of wastelands. Such areas are characterized by loss of vegetation cover, loss of soil structure, increase in soil erosion, loss of available nutrients and organic matter, loss of microbial propagules and /or diminution of microbial activities (Herrera et al., 1993).


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Plant Soil Arbuscular Mycorrhiza Fungal Hypha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, L.K. and Robson, A.D., 1982, The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation, Aust. J. Agric. Res. 33: 389–408.CrossRefGoogle Scholar
  2. Abbott, L.K., Robson, A.D. and Gazey, C., 1992, Selection of inoculant vesicular-arbuscular mycorrhizal fungi, in: Methods in Microbiology: Techniques for Study of Mycorrhiza (J.R. Norris, D.J. Read and A.K. Varna, eds.), Academic Press, London.Google Scholar
  3. Allen, M.F., 1996, The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st, Mycol. Res. 100: 769–789.CrossRefGoogle Scholar
  4. Augé, R.M., Schekel, K.A. and Wample, R.L., 1987a, Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclamation, Physiol. Plant 70: 175–182.CrossRefGoogle Scholar
  5. Augé, R.M., Schekel, K.A. and Wample, R.L., 1987b, Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress, Plant Soil 99: 291–302.CrossRefGoogle Scholar
  6. Bagyaraj, D.J. and Vanna, A., 1995, Interaction between arbuscular mycorrhizal fungi and plants, in: Advances in Microbiol Ecology Vol. 14 (J. Gwynfryn Jones, ed.), Plenum Press, New York and London.Google Scholar
  7. Bansal, M. and Mukerji, K.G., 1994a, Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora, Mycorrhiza 5: 39–44.CrossRefGoogle Scholar
  8. Bansal, M. and Mukerji, K.G., 1994b, Efficacy of root litter as a biofertilizer, Biol. Fert. Soil 18: 228–230.CrossRefGoogle Scholar
  9. Bansal, M. and Mukerji, K.G., 1996, Root exudates in rhizosphere biology, in: Concepts in Applied Microbiology and Biotechnology (K.G. Mukerji, V.P. Singh and S. Dwivedi, eds.), Aditya Books Pvt. Ltd., New Delhi.Google Scholar
  10. Barea, J.M., 1991, Vesicular-arbuscular mycorrhizae as modifiers of soil fertility, Adv. Soil. Sci. 15: 1–40.CrossRefGoogle Scholar
  11. Barea, J.M. and Jeffries, P., 1995, Arbuscular mycorrhizas in sustainable soil-plant systems, in: Mycorrhiza - Structure,Function and Physiology (A. Varma and B. Hock, eds.), Springer-Verlag, Berlin.Google Scholar
  12. Barea, J.M., Azcbn, R. and Azcdn-Aguillar, C., 1988, The role of rnycorrhiza in improving establishment and function of Rhizobium-legume system under field conditions, in: Nitrogen Fixation by Legumes in Mediterranean Agriculture (D.P. Beck and L.A. Meterson, eds.), ICARDA, Martinus-Nijhoff, Dordrecht.Google Scholar
  13. Barea, J.M., Azcòn, R., and Azcdn-Aguillar, C., 1992, Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems, in: Methods in Microbiology, Vol. 24 (JR. Norris, D.J. Read, A.K. Varma, eds.), Academic Press,London.Google Scholar
  14. Bethlenfalvay, G.J., 1992, Mycorrhizae and crop productivity, in: Mycorrhiza in Sustainable Agriculture (G.J. Bethlenfalvay and R.G. Linderman, eds.), ASA Special Publication, Madison, WI.Google Scholar
  15. Bethlenfalvay, G.J., Thomas, R.S., Dakessian, S., Brown, M.S. and Ames, R.N., 1988, Mycorrhizae in stressed environments: effects on plant growth, endophyte development, soil stability and soil water, in: Arid Lands, Today and Tomorrow (E.E. Whitehead, ed.), Westview Press, Boulder, CO.Google Scholar
  16. Bhandari, N.N. and Mukerji, K.G., 1993, The Haustorium, Research Studies Press Ltd., England.Google Scholar
  17. Cox, G. and Tinker, P.B., 1976, Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas. 1. The arbuscule and phosphorus transfer: a qualitative ultrastructural study, New Phytol. 77: 371–378.CrossRefGoogle Scholar
  18. Cress, W.A., Throneberry, G.O. and Lindsay, D.L., 1979, Kinetics of phosphorus absorption by mycorrhizal and non mycorrhizal tomato roots, Plant Physiol. 64: 484–487.PubMedCrossRefGoogle Scholar
  19. Ellis, J.R., Larsen, H.J. and Boosalis, M.G., 1985, Drought resistance of wheat plants inoculated with vesiculararbuscular mycorrhizae, Plant Soil 86: 369–378.CrossRefGoogle Scholar
  20. Faber, B.A., Zasoki, R.J., Burau, R.G. and Uriu, K., 1990, Zinc uptake by corn as affected by vesicular-arbuscular mycorrhiza, Plant Soil 129: 121–130.Google Scholar
  21. Fairchild, G.L. and Miller, M.H., 1988, Vesicular-arbuscular mycorrhizas and soil disturbance-induced reduction of nutrient absorption in maize II. Development of the effect, New Phytol. 110: 75–84.CrossRefGoogle Scholar
  22. Fitter, A.H. and Garbaye, J., 1994, Interactions between mycorrhizal fungi and other soil organisms, Plant Soil 159: 123–132.Google Scholar
  23. Friese, C.F. and Allen, M.F., 1991, The spread of VA mycorrhizal fungal hyphae in soil: inoculum type and external hyphal architecture, Mycologia 83: 409–418.CrossRefGoogle Scholar
  24. Garriock, M.L., Petersen, R.L., and Ackerley, C.A., 1989, Early stages in colonization ofAllium porrum (Leek) roots by VAM fungus, Glomus versiforme, New Phytol. 122: 85–92.CrossRefGoogle Scholar
  25. Gaur, A., 1997, Inoculum production technology development of vesicular-arbuscular mycorrhizae, Ph.D. Thesis, University of Delhi, India.Google Scholar
  26. Gianinazzi-Pearson, V. and Gianinazzi, S., 1989, Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae, Genome 31: 336–341.CrossRefGoogle Scholar
  27. Gianinazzi-Pearson, V., Smith, S.E., Gianinazzi, S. and Smith, F.A., 1991, Enzymatic studies on the metabolism of vesicular arbuscular mycorrhiza V. and H’ ATP hydrolysing enzyme a component of ATP hydrolysing activities in plant-fungus interfaces?, New Phytol. 117: 61–74.CrossRefGoogle Scholar
  28. Gianinazzi-Pearson, V., Gollotte, A., Lherminier, J., Tisserant, B., Franken, P., Dumas-Gaudat, E., Lemoine, M.C., Tuinen, D. Van and Gianinazzi, S., 1995, Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations, Can J. Bot. 73 (suppl. 1): S526–S532.CrossRefGoogle Scholar
  29. Gildon, A. and Tinker, P.B., 1983, Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. 1: The effect of heavy metals on development of vesicular-arbuscular mycorrhizal symbiosis, New Phytol. 95: 247–261.CrossRefGoogle Scholar
  30. Giovannetti, M., Avio, L., Sbrana, C. and Citemesi, A.S., 1993, Factors affecting appresorium development in vesicular arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, New Phytol. 123: 114–122.Google Scholar
  31. Giovannetti, M., Sbrana, C., Citemesi, A.S., Avio, L., Gollotte, A., Gianinazzi-Pearson, V. and Gianinazzi, S., 1994, Recognition and infection process, basis for host specificity of arbuscular mycorrhizal fungi, in: Impact of Arbuscular Mycorrhizae on Sustainable Agriculture and Natural Ecosystems (S. Gianinazzi and H. Shcüepp, eds.), Birkhauser, Basel.Google Scholar
  32. Harley, J.L., 1991, Introduction: the state of art, in: Methods in Microbiology, Vol. 23 (JR. Norris, D.J. Read and A.K. Vannaeds.) Academic Press, London.Google Scholar
  33. Henderson, J.C. and Davies, F.J., 1990, Drought acclamation and morphology of mycorrhizal Rosa hybrida ‘Ferdy’ is independent of leaf element content, New Phytol. 115: 503–510.CrossRefGoogle Scholar
  34. Herrera, M.A., Salamanca, C.A. and Barea, J.M., 1993, Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems, Appl. Environ. Microbiol. 59: 129–133.PubMedGoogle Scholar
  35. Huang, R.S., Smith, W.K. and Yost, R.S., 1985, Influence of vesicular-arbuscular mycorrhiza on growth, water relations and leaf orientation in Leucaena leucocephala (Linn.) De. Wit., New Phytol. 99: 229–243.CrossRefGoogle Scholar
  36. Jalali, B.L. and Jalali, I., 1991, Mycorrhiza in plant disease control, in: Handbook of Applied Mycology Vol. I Soil and Plants (D.K. Arora, B. Rai, K.G. Mukerji and G.R. Knudsen, eds.), Marcel Dekker Inc., New York.Google Scholar
  37. Jeffries, P. and Dodd, J.C., 1991, The use of mycorrhizal inoculants in forestry and agriculture, in: Handbook of Applied Mycology Vol. 1, Soil and Plants (D.K. Arora, B. Rai, K.G. Mukerji and G.R. Knudsen, eds.), Marcel Dekker Inc., New York.Google Scholar
  38. Johansen, A., Jakobsen, I. and Jensen, E.S., 1992, Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N, New Phytol. 122: 281–288.CrossRefGoogle Scholar
  39. Johansen, A., Jakobsen, I. and Jensen, E.S., 1993, External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III Hyphal transport of’ZP and 15N, New Phytol. 124: 61–68.CrossRefGoogle Scholar
  40. Jungk, A. and Claasen, N., 1989, Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants, J. Pfanzenernachr,Bodenkd. 152: 151–157.CrossRefGoogle Scholar
  41. Karunaratne, R.S., Baker, J.H. and Barker, A.V., 1986, Phosphorus uptake by mycorrhizal and non mycorrhizal roots of soybean, J Plant Nutr. 9: 1303–1313.CrossRefGoogle Scholar
  42. Kothari, S.K., Marschner, H. and George, E., 1990, Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize, New Phytol. 116: 303–311.CrossRefGoogle Scholar
  43. Kaushik, A. and Mukerji, K.G., 1996, Mycorrhiza in control of diseases, in: Disease Scenario in Crop Plants (V.P. Agnihotri, O. Prakash, R. Kishun and A.K. Mishra, eds.), Int. Books and Periodicals Sup. Ser., Delhi, India.Google Scholar
  44. Lambert, D.H and Weidensaul, T.C., 1991, Element uptake by mycorrhizal soybean from sewage-sludge treated soil, Soil Sci. Soc. Am. J. 55: 393–398.CrossRefGoogle Scholar
  45. Lei, J., Bécard, G., Catford, J.G. and Piché, Y., 1991, Root factors stimulate 32P uptake and plasmalemma ATPase activity in the vesicular-arbuscular mycorrhizal fungus, New Phytol. 118: 289–294.CrossRefGoogle Scholar
  46. Linderman, R.G., 1988, Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect, Phytopathology 78: 366–371.Google Scholar
  47. Li, X-L., Marschner, H. and George, E., 1991, Acquisition of phosphorus and copper by VA-Mycorrhizal hyphae and root to shoot transport in white clover, Plant Soil, 136: 49–57.CrossRefGoogle Scholar
  48. Lumini, E., Bosio, M., Puppi, G., Isopi, R., Frattegiani, M., Buresti, E. and Favilli, F., 1994, Field performance of Alnus cordato Loisel (Italian Alder) inoculated with Frankia and VA mycorrhizal strains in mine-spoil afforestation plots, Soil Biol. Biochem. 26: 659–661.CrossRefGoogle Scholar
  49. Marschner, H. and Dell, B., 1994, Nutrient uptake in mycorrhizal symbiosis, Plant Soil 159: 89–102.Google Scholar
  50. Menge, J.A., Jarrell, W.M., Labanauskas, C.K., Ojala, J.C., Huszar, C., Johnson, E.L.V. and Sibert, D., 1982, Predicting mycorrhizal dependency of Troyer citranage on Glomus fasciculatus in California citrus soils and nursery mixes, Soil Sci. Soc. Am. J. 46: 762–768.CrossRefGoogle Scholar
  51. Michelsen, A. and Rosendahl, S., 1990, The effect of VA mycorrhizal fungi, phosphorus and drought stress on growth of Acacia nilotica and Leucaena leucocephala seedlings, Plant Soil 124: 713.CrossRefGoogle Scholar
  52. Michelsen, A. and Sprent J.I., 1994, The influence of vesicular-arbuscular mycorrhizal fungi on nitrogen fixation of nursery-grown Ethiopian acacias estimated by 15N natural abundance method, Plant Soil 160: 249–257.CrossRefGoogle Scholar
  53. Miller, R.M. and Jastrow, J.D., 1992, The role of mycorrhizal fungi in soil conservation, in: Mycorrhiza in Sustainable Agriculture (G.J. Bethlenfalvay and R.G. Linderman, eds.), ASA Special Publ, Madison, WI.Google Scholar
  54. Morton, J.B. and Benny, G.L., 1990, Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an amendation of Glomaceae, Mycotaxon 37: 471–491.Google Scholar
  55. Morton, J.B. and Bentivenga, S.P., 1994, Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups, Plant Soil 159: 47–60.Google Scholar
  56. Mosse, B., 1959, Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte, Trans. Br. Mycol. Soc. 42: 439–448.CrossRefGoogle Scholar
  57. Mosse, B., 1973, Advances in the study of vesicular arbuscular mycorrhiza, Ann. Rev. Phytopathol. 11: 171–196.CrossRefGoogle Scholar
  58. Mukerji, K.G. and Dixon, R., 1992, Mycorrhizae in reforestation in: Proceedings International Symposium on Rehabilitation of Tropical Rainforest Ecosystems, Malaysia.Google Scholar
  59. Mukerji, K.G. and Mandeep, 1997, Mycorrhizal relationships of wetlands and rivers associated plants, in: Ecology of Wetlands (S.K. Majumdar, ed.), The Pennsylvania Academy of Sciences, USA.Google Scholar
  60. Mukerji, K.G. and Sharma, M., 1996, Mycorrhizal relationships in forest ecosystems, in: Forests: A Global Perspective (S.K. Majumdar, E.W. Miller and F.J. Brenner, eds.), The Pennsylvania Academy of Sciences, USA.Google Scholar
  61. Mukerji, K.G., Mandeep and Vanna, A.K., 1998, Mycorrhizosphere microorganisms: screening and evaluation, in: Mycorrhiza Manual (A. Vanna, ed.), Springer-Verlag, Hiedelberg, Germany.Google Scholar
  62. Mukerji, K.G., Chamola, B.P. and Sharma, M., 1997, Mycorrhiza in control of plant pathogens, in: Management of Threatening Plant Diseases of Nationallmportance (Y.P. Agnihotri, A.K. Sarbhoy and D.V. Singh, eds.), Malhotra Publishing House, New Delhi.Google Scholar
  63. Mukerji, K.G., Chamola, B.P., Kaushik, A., Sarwar, N. and Dixon, R., 1996, Vesicular arbuscular mycorrhiza: potential biofertilizer for nursery raised multipurpose tree species in tropical soils, Ann. For. 4: 12–20.Google Scholar
  64. Newman, E.I., Eason, W.R., Eissenstat, D.M. and Romos, M.I.R.F., 1992, Interactions between plants: the role of mycorrhizae, Mycorrhiza 1: 47–53.CrossRefGoogle Scholar
  65. Noyd, R.K., Pfleger, F.L. and Norland, M.R., 1996, Field responses to added organic matter, arbuscular fungi and fertilizer in reclamation of taconite iron ore tailing, Plant Soil 179: 89–97.CrossRefGoogle Scholar
  66. O’Keefe, D.M. and Sylvia, D.M., 1992, The chronology and mechanism of mycorrhizal plant growth responses on sweet potato, New Phytol. 122: 651–659.Google Scholar
  67. Osonubi, O., Mulongoy, K., Awotoye, O.O., Atayese, M.O. and Okali, D.V.V., 1991, Effect of ectomycorrhizal and vesicular arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings, Plant Soil 136: 131–143.CrossRefGoogle Scholar
  68. Paulitz, T.C. and Linderman, R.G., 1991, Mycorrhizal interactions with soil microorganisms, in: Handbook of Applied Mycology Vol. 1: Soil and Plants (D.K. Arora, B. Rai, K.G. Mukerji and G.R. Knudsen, eds.), Marcel Dekker, New York.Google Scholar
  69. Pfeiffer, C.M. and Bless, H.E., 1988, Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular arbuscular mycorrhiza and phosphorus fertilization, New Phytol. 108: 315–321.CrossRefGoogle Scholar
  70. Reinhard, S., Weber, E., Martin, P. and Marschner, H., 1994, Influence of phosphorus supply and light intensity on mycorrhizal response in Pisum-Rhizobium-Glomus symbiosis, EXPEA, 50: 890–896.CrossRefGoogle Scholar
  71. Rhodes, L.H. and Gerdemann, J.W., 1975, Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions, New Phytol. 75: 555–561.CrossRefGoogle Scholar
  72. Rozema, J., Arp, W., Diggelen, J., Van Esbrock, M., Van Broekmann, R. and Punte, H., 1986, Occurrence and ecological significance of VAM in salt marsh environment, Acta. Bot. Neerl. 35: 457–467.Google Scholar
  73. Sarwar, N., 1996, Vesicular arbuscular mycorrhiza in relation to multipurpose legumes, Ph.D. Thesis, University of Delhi, India.Google Scholar
  74. Scannerini, S. and Bonfante-Fasolo, P., 1979, Ultrastructural, cytochemical demonstration of polysaccharides and proteins within host arbuscule interfacial matrix in an endomycorrhiza, New Phytol. 83: 87–94.CrossRefGoogle Scholar
  75. Sharma, M. and Mukerji, K.G., 1995, Interactions between vesicular-arbuscular mycorrhizal fungi and free-living nitrogen fixers and its effect on growth of jute, in: Mycorrhizae - Biofertilizers for the Future (A. Adholeya and S. Singh, eds.), TERI, New Delhi.Google Scholar
  76. Sieverding, E., 1991, Vesicular-arbuscular mycorrhiza in management of tropical agrosystems, Gesellschaft far Technische Zusammenabeit (GTZ), Eschbom, Germany.Google Scholar
  77. Singh, R., 1997, VAM establishment in two multipurpose tree species, MPhil. diss., University of Delhi, India. Smith, S.E., 1980, Mycorrhizas of autotrophic higher plants, Biol. Rev. 55: 475–510.Google Scholar
  78. Smith, S.E. and Smith, F.A., 1990, Structure and function of the interfaces in biotrophic symbiosis as they relate to nutrient transport, New Phytol. 114: 1–38.CrossRefGoogle Scholar
  79. Smith, S.E. and Read, D.J., 1997, Mycorrhizal Symbiosis, Academic Press, London.Google Scholar
  80. Srivastava, D., Kapoor, R., Srivastava, S.K. and Mukerji, K.G., 1996, Vesicular arbuscular mycorrhiza - an overview, in: Concepts in Mycorrhizal Research (KG. Mukerji, ed.), Kluwer Academic Publ., Netherland.Google Scholar
  81. Sylvia, D.M. and Williams, S.E., 1992, Vesicular-arbuscular mycorrhiza and environmental stress, in: Mycorrhizae in Sustainable Agriculture (G.J. Bethlenfalvay and R.G. Linderman, eds.), ASA Special Publ., Madison, WI.Google Scholar
  82. Szanizzlo, P.J., Powell, R.E., Reid, C.P.P. and Cline, G.R., 1981, Production of hydroxymate siderophore iron chelators by ectomycorrhizal fungi, Mycologia 73: 1153–1174.Google Scholar
  83. Tarafdar, J.C. and Marschner, H., 1994, Phosphatase activity in rhizosphere and hydrosphere of VA mycorrhizal wheat supplied with inorganic phosphorus, Soil Biol. Biochem. 26: 387–395.CrossRefGoogle Scholar
  84. Tester, M., Smith, A. and Smith, S.E., 1992, The role of ion channels in controlling solute exchange in mycorrhizal associations, in: Mycorrhizas in Ecosystems (D.J. Read, D.H. Lewis, A.H. Fitter and I.J. Alexander, eds.), CAB International, Cambridge.Google Scholar
  85. Timmer, L.W. and Leyden, R.F., 1978, Stunting of Citrus seedlings on fumigated soils in Texas and its correction by phosphorus fertilization and inoculation with mycorrhizal fungi, J. Am. Soc. Hort. Sci., 103: 533–537.Google Scholar
  86. Van Kessel, C., Singleton, P.W. and Hobbel, H.J., 1985, Enhanced nitrogen transfer from soybean to maize by vesicular-arbuscular mycorrhizal fungi, Plant Physiol. 79: 562–563.PubMedCrossRefGoogle Scholar
  87. Varma, A., 1995, Ecophysiology and application of arbuscular mycorrhizal fungi in arid soils, in: Mycorrhiza - Structure, Function and Physiology (A. Varma and B. Hock, eds.), Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • M. Kaur
    • 1
  • K. G. Mukerji
    • 1
  1. 1.Applied Mycology Laboratory Department of BotanyDelhi UniversityDelhiIndia

Personalised recommendations