Skip to main content

Activation of Apoptosis Pathways by Anticancer Drugs

  • Chapter
Drug Resistance in Leukemia and Lymphoma III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 457))

Abstract

The first antitumor drug (aminopterin) was introduced into the treatment of childhood leukemia by Sidney Farber almost 50 years ago. In the past 20 years long term remission and cure has been achieved in 70–80% of patients with leukemia, using combination therapy with several anticancer drugs and high dose protocols. However, the widespread use of chemotherapy also has shown that certain tumors are chemosensitive while others are chemoresistant. Why is chemotherapy effective? Anticancer drugs have not been designed for a specific cellular or molecular target but have been identified in assays based on their capacity to inhibit proliferation and clonogenicity. Early concepts on how chemotherapy may kill tumor cells have focused on interference with either cellular metabolism or DNA synthesis. However the biochemical characterization of drug mediated inhibition of cellular proliferation has shown that most drugs hit various targets. Drugs efficiently used in cancer therapy include diverse chemical compounds such as anti-metabolites (e.g. methotrexate, 5-fluorouracil), DNA damaging agents (e.g. cyclophosphamide, cisplatin, doxorubicine), mitotic inhibitors (e.g. vincristine), nucleotide analogs (6-mercaptopurine) or inhibitors of topoisomerases involved in DNA repair (e.g. etoposide). While cell death induced by anticancer agents has been considered to be a consequence of a block in proliferation or simply “toxicity”, recent studies have shown that most anticancer agents induce apoptosis in target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dive C, Evans CA, Whetton AD. Induction of apoptosis — new targets for cancer chemotherapy. Cancer Biol (1992) 3:417–427

    CAS  Google Scholar 

  2. Hannun YA. Apoptosis and the Dilemma of Cancer Chemotherapy. Blood (1997) 89, 6:1845–1853

    PubMed  CAS  Google Scholar 

  3. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell (1997) 88:323–331

    Article  PubMed  CAS  Google Scholar 

  4. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene (1994) 9:1799–1805

    PubMed  CAS  Google Scholar 

  5. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anti-cancer agents. Cell (1993) 74:957–967

    Article  PubMed  CAS  Google Scholar 

  6. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T. p53 Status and the Efficacy of Cancer Therapy in Vivo. Science (1994) 266:807–810

    Article  PubMed  CAS  Google Scholar 

  7. Milner J. DNA damage, p53 and anticancer therapies. Nature Med (1995) 1(9): 879–880

    Article  PubMed  CAS  Google Scholar 

  8. Campana D, Coustan-Smith E, Manabe A, Buschle M, Raimondi SC, Behm FG, Ashmun R, Aricò M, Biondi A, Pui C-H. Prolonged Survival of B-Lineage Acute Lymphoblastic Leukemia Cells Is Accompanied by Overexpression of Bcl-2 Protein. Blood (1993) 81(4): 1025–1031

    PubMed  CAS  Google Scholar 

  9. Campos L, Rouault J-P, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud J-P, Guyotat D. High Expression of Bcl-2 Protein in Acute Myeloid Leukemia Cells Is Associated With Poor Response to Chemotherapy. Blood (1993) 81(11): 3091–3096

    PubMed  CAS  Google Scholar 

  10. Miyashita T, Reed JC. Bcl-2 Oncoprotein blocks Chemotherapy-Induced Apoptosis in a Human Leukemia Cell Line. Blood (1993) 81(1): 151–157

    PubMed  CAS  Google Scholar 

  11. Dole MG, Jasty R, Cooper MJ, Thompson CB, Nunez G, Castle VP. Bcl-xL Is Expressed in Neuroblastoma Cells und Modulates Chemotherapy-induced Apoptosis. Cancer Res (1995) 55:2576–2582

    PubMed  CAS  Google Scholar 

  12. Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of Bcl-xL can confer a multidrug resistance phenotype. Blood (1995) 86(5): 1903–1910

    PubMed  CAS  Google Scholar 

  13. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the Bcl-2 family and cell death. Blood (1996) 88(2): 386–401

    PubMed  CAS  Google Scholar 

  14. Hermine O, Haioun C, Lepage E, d’Agay M-F, Briere J, Lavignac C, Fillet G, Salles G, Marolleau J-P, Diebold J, Reyes F, Gaulard P. Prognostic significance of Bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Blood (1996) 87:265–272

    PubMed  CAS  Google Scholar 

  15. Coustan-Smith E, Kitanaka A, Pui C-H, McNinch L, Evans WE, Raimondi SC, Behm FG, Aricò M, Campana D. Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood (1996) 87(3): 1140–1146

    PubMed  CAS  Google Scholar 

  16. Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius V-M, Niskanen E, Nordling S, Reed JC. Reduced expression of pro-apoptotic gene bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res (1995) 55:4471–4478

    PubMed  CAS  Google Scholar 

  17. Bargou RC, Daniel PT, Mapara MY, Bommert K, Wagener C, Kallinich B, Royer HD, Dörken B. Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-α expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer (1995) 60:854–859

    Article  PubMed  CAS  Google Scholar 

  18. Miyashita T, Reed JC. Tumor Suppressor p53 Is a Direct Transcriptional Activator of the Human bax Gene. Cell (1995) 80:293–299

    Article  PubMed  CAS  Google Scholar 

  19. Nagata S, Golstein P. The Fas death factor. Science (1995) 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  20. Nagata S. Apoptosis by Death Factor. Cell (1997) 88:355–365

    Article  PubMed  CAS  Google Scholar 

  21. Peter ME, Kischkel FC, Hellbardt S, Chinnaiyan AE, Krammer PH, Dixit VM. CD95 (APO-1/Fas)-associating signalling proteins. Cell Death Diff (1996) 3:161–170

    CAS  Google Scholar 

  22. Krammer PH, Dhein J, Walczak H, Behrmann I, Mariani S, Matiba B, Fath M, Daniel PT, Knipping E, Westendorp MO, Stricker K, Bäumler C, Hellbardt S, Germer M, Peter ME, Debatin K-M. The role of APO-1 mediated apoptosis in the immune system. Immunol Rev (1994) 142:175–191

    Article  PubMed  CAS  Google Scholar 

  23. Scaffidi C, Fulda S, Li F, Friesen C, Srinivasan A, Tomaselli KJ, Debatin K-M, Krammer PH, Peter ME. Two CD95 Signaling Pathways. EMBO J (1998) 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  24. Kroemer G. The proto-oncogene bcl-2 and its role in regulating apoptosis. Nat Med (1997) 3, 6:614–620

    Article  PubMed  CAS  Google Scholar 

  25. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IAG, Debatin K-M, Fischer A, De Villartay JP. Mutations in Fas Associated with Human Lymphoproliferative Syndrome and Autoimmunity. Science (1995) 268:1347–1349

    Article  PubMed  CAS  Google Scholar 

  26. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middelton LA, Lin AY, Strober W, Lenardo MJ, Puck JM. Dominant Interfering Fas Gene Mutations Impair Apoptosis in a Human Autoimmune Lymphoproliferative Syndrome. Cell (1995) 81:935–946

    Article  PubMed  CAS  Google Scholar 

  27. Drappa J, Vaishnaw AK, Sullivan KE, Chu J-L, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med (1996) 335:1643–1649

    Article  PubMed  CAS  Google Scholar 

  28. Debatin K-M. Disturbances of the CD95 (APO-1/Fas) system in disorders of lymphohematopoietic cells. Cell Death Diff (1996) 3(2): 185–189

    CAS  Google Scholar 

  29. Barcena A, Park SW, Banapour B, Muench MO, Mechetner E. Expression of Fas/CD95 and Bcl-2 by primitive hematopoietic progenitors freshly isolated from human fetal liver. Blood (1996) 88(6): 2013–2025

    PubMed  CAS  Google Scholar 

  30. Debatin K-M. APO-1 (CD95) and Bcl-2 Determinants of Cell Death in the Human Thymus. Res Immunol (1994) 56:146–151

    Article  Google Scholar 

  31. Debatin K-M, Süss D, Krammer PH. Differential expression of APO-l on human thymocytes: implications for negative selection. Eur J Immunol (1994) 24:753–758

    Article  PubMed  CAS  Google Scholar 

  32. Maciejewski J, Selleri C, Anderson S, Young NS. Fas Antigen Expression on CD34+ Human Marrow Cells Is Induced by Interferon y and Tumor Necrosis Factor a and Potentiates Cytokine-Mediated Hematopoietic Suppression in vitro. Blood (1995) 85(11): 3183–3190

    PubMed  CAS  Google Scholar 

  33. Stahnke K, Hecker S, Kohne E, Debatin K-M. CD95 (APO-1/Fas) mediated apoptosis in cytokine activated hematopoietic cells. Exp Hematol (1998) 26:844–850

    PubMed  CAS  Google Scholar 

  34. Klas C, Debatin K-M, Jonker RR, Krammer PH. Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol (1993) 5:625–630

    Article  PubMed  CAS  Google Scholar 

  35. DiGiuseppe JA, LeBeau P, Augenbraun J, Borowitz MJ. Multiparameter flow-cytometric analysis of Bcl-2 and Fas expression in normal and neoplastic hematopoiesis. Am J Clin Pathol (1996) 106(3): 345–351

    PubMed  CAS  Google Scholar 

  36. Debatin K-M, Goldman CK, Bamford R, Waldmann TA, Krammer PH. Monoclonal antibody-mediated apoptosis in adult T cell leukemia. Lancet (1990) 335:497–500

    Article  PubMed  CAS  Google Scholar 

  37. Debatin K-M, Goldman CK, Waldmann TA, Krammer PH. APO-1 induced apoptosis of leukemia cells from patients with adult T cell leukemia. Blood (1993) 81:2972–2977

    PubMed  CAS  Google Scholar 

  38. Sugahara K, Yamada Y, Hiragata Y, Matsuo Y, Tsuruda K, Tomonaga M, Maeda T, Atogami S, Tsukasaki K, Kamihira S. Soluble and membrane isoforms of Fas/CD95 in fresh adult T cell leukemia (ATL) cells and ATL cell lines. Int J Cancer (1997) 72:128–132

    Article  PubMed  CAS  Google Scholar 

  39. Kondo E, Yoshino T, Yamadori I, Matsuo Y, Kawasaki N, Minowada J, Akagi T. Expression of Bcl-2 protein and Fas antigen in non-Hodgkin’s lymphoma. Am J Pathol (1994) 145:330–337

    PubMed  CAS  Google Scholar 

  40. Debatin K-M, Krammer PH. Resistance to APO-1 (CD95) induced apoptosis in T-ALL is determined by a Bcl-2 independent anti-apoptotic program. Leukemia (1995) 9:815–820

    PubMed  CAS  Google Scholar 

  41. Lücking-Famira KM, Daniel PT, Möller P, Krammer PH, Debatin K-M. APO-1 (CD95) Mediated Apoptosis in Human T-ALL Engrafted in SCID Mice. Leukemia (1994) 8:1825–1833

    PubMed  Google Scholar 

  42. Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW, Anderson KC. Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood (1997) 89(1): 227–234

    PubMed  CAS  Google Scholar 

  43. Hata H, Matsuzaki H, Takeya M, Yoshida M, Sonoki T, Nagasaki A, Kuribayashi N, Kawano F, Takatsuki K. Expression of Fas/APO-1 (CD95) and apoptosis in tumor cells from patients with plasma cell disorders. Blood (1995) 86(5): 1939–1945

    PubMed  CAS  Google Scholar 

  44. Panayiotidis P, Ganeshaguru K, Foroni L, Hoffbrand AV. Expression and function of the Fas antigen in B chronic lymphocytic leukemia and hairy cell leukemia. Leukemia (1995) 9(7): 1227–1232

    PubMed  CAS  Google Scholar 

  45. Egle A, Villunger A, Marschitz I, Kos M, Hittmair A, Lukas P, Grünewald K, Greil R. Expression of Apo1/Fas (CD95), Bcl-2, Bax and Bcl-x in myeloma cell lines: relationship between responsiveness to anti-Fas mab and p53 functional status. Br J Haematol (1997) 97:418–428

    Article  PubMed  CAS  Google Scholar 

  46. Munker R, Lubbert M, Yonehara S, Tuchnitz A, Mertelsmann R, Wilmanns W. Expression of the Fas antigen on primary human leukemia cells. Ann Hematol (1995) 70(1): 15–17

    Article  PubMed  CAS  Google Scholar 

  47. Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B, Young NS, Maciejewski JP. Involvement of Fas-mediated apoptosis in the inhibitory effects of Interferon-α in chronic myelogenous leukemia. Blood (1997) 89(3): 957–964

    PubMed  CAS  Google Scholar 

  48. Dirks W, Schöne S, Uphoff C, Quentmeier H, Pradella S, Drexler HG. Expression and function of CD95 (Fas/APO-1) in leukaemia-lymphoma tumour lines. Br J Haematol (1997) 96:584–593

    Article  PubMed  CAS  Google Scholar 

  49. Robertson MJ, Manley TJ, Pichert G, Cameron C, Cochran KJ, Levine H, Ritz J. Functional consequences of APO-1/Fas (CD95) antigen expression by normal and neoplastic hematopoietic cells. Leuk Lymphoma (1995) 17(1-2): 51–61

    Article  PubMed  CAS  Google Scholar 

  50. Shima Y, Nishimoto N, Ogata A, Fujii Y, Yoshizaki K, Kishimoto T. Myeloma cells express Fas antigen/APO-1 (CD95) but only some are sensitive to anti-Fas antibody resulting in apoptosis. Blood (1995) 85(3): 757–764

    PubMed  CAS  Google Scholar 

  51. Wang D, Freeman GJ, Levine H, Ritz J, Robertson MJ. Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br J Haematol (1997) 97:409–417

    Article  PubMed  CAS  Google Scholar 

  52. Min YH, Lee S, Lee JW, Chong SY, Hahn JS, Ko YW. Expression of Fas antigen in acute myeloid leukaemia is associated with therapeutic response to chemotherapy. Br J Haematol (1996) 93:928–930

    Article  PubMed  CAS  Google Scholar 

  53. Fellenberg J, Mau H, Scheuerpflug C, Ewerbeck V, Debatin K-M. Modulation of resistance to anti-APO-1 induced apoptosis in osteosarcoma cells by cytokines. Int J Cancer (1997) 72:536–542

    Article  PubMed  CAS  Google Scholar 

  54. Knipping E, Debatin K-M, Stricker K, Heilig B, Eder A, Krammer PH. Identification of Soluble APO-1 in Supernatants of Human B-and T-Cell Lines and Increased Serum Levels in B-and T-Cell Leukemias. Blood (1995) 85:1562–1569

    PubMed  CAS  Google Scholar 

  55. Munker R, Midis G, Owen-Schaub L, Andreff M. Soluble Fas (CD95) is not elevated in the serum of patients with myeloid leukemias, myeloproliferative and myelodysplastic syndromes. Leukemia (1996) 10:1531–1533

    PubMed  CAS  Google Scholar 

  56. Beltinger CP, Kurz E, Böhler T, Schrappe M, Ludwig W-D, Debatin K-M. CD95(APO-1/Fas) mutations in childhood T-lineage acute lymphoblastic leukemia. Blood (1998) 91:3943–3951

    PubMed  CAS  Google Scholar 

  57. Dhein J, Walczak H, Bäumler C, Debatin K-M, Krammer PH. Autocrine T-cell suicide mediated by APO-1/Fas (CD95). Nature (1995) 373:438–441

    Article  PubMed  CAS  Google Scholar 

  58. Friesen C, Herr I, Krammer PH, Debatin K-M. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in drug induced apoptosis in leukemia cells. Nature Med (1996) 2(5): 574–577

    Article  PubMed  CAS  Google Scholar 

  59. Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle P. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest (1997) 99:403–413

    Article  PubMed  Google Scholar 

  60. Fulda S, Sieverts H, Friesen C, Herr I, Debatin K-M. The CD95 (APO-1/Fas) system mediates drug induced apoptosis in neuroblastoma cells. Cancer Res (1997) 57:3823–3829

    PubMed  CAS  Google Scholar 

  61. Houghton JA, Harwood FG, Tillman DM (1997) Thymineless death in colon carcinoma cells is mediated via Fas signaling. Proc Natl Acad Sci USA 94:8144–8149

    Article  PubMed  CAS  Google Scholar 

  62. Debatin K-M. Cytotoxic Drugs, Programmed Cell Death, and the Immune System: Defining New Roles in an Old Play. J Nat Cancer Inst (1997) 89:750–751

    Article  PubMed  CAS  Google Scholar 

  63. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang W-W, Kruzel E, Radinsky R. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol & Cell Biol (1995) 15, 6:3032–3040

    CAS  Google Scholar 

  64. Herr I, Böhler T, Wilhelm D, Angel P, Debatin K-M. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J (1997) 16(20): 6200–6208

    Article  PubMed  CAS  Google Scholar 

  65. Los M, Herr I, Friesen C, Fulda S, Schulze-Osthoff K, Debatin K-M. Crossresistance of CD95-and drug-induced apoptosis as a consequence of deficient activation of caspases (ICE/Ced-3 proteases). Blood (1997) 90(8): 3118–3129

    PubMed  CAS  Google Scholar 

  66. Eischen CM, Kottke TJ, Martins LM, Basi GS, Tung JS, Earnshaw WC, Leibson PJ, Kaufmann SH. Comparison of apoptosis in wild-type and Fas-resistant cells: Chemotherapy-induced apoptosis is not dependent on Fas/Fas ligand interactions. Blood (1997) 90(3): 935–943

    PubMed  CAS  Google Scholar 

  67. Villunger A, Egle A, Kos M, Hartmann B, Geley S, Kofler R, Greil R. Drug-induced apoptosis is associated with enhanced Fas (APO-1/CD95) ligand expression but occurs independently of Fas (APO-1/CD95) signaling in human T-acute lymphatic leukemia cells. Cancer Res (1997) 57:3331–3334

    PubMed  CAS  Google Scholar 

  68. Fulda S, Friesen C, Los M, Scaffidi CA, Mier W, Benedict M, Nunez G, Krammer PH, Peter ME, Debatin K-M. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res (1997) 57:4956–4964

    PubMed  CAS  Google Scholar 

  69. Friesen C, Fulda S, Debatin K-M. Deficient Activation of the CD95 (APO-1/Fas) System in drug-resistant cells. Leukemia (1997) 11:1833–1841

    Article  PubMed  CAS  Google Scholar 

  70. Landowski TH, Gleason-Guzman MC, Dalton WS. Selection for drug resistance results in resistance to Fas-mediated apoptosis. Blood (1997) 89(6): 1854–1861

    PubMed  CAS  Google Scholar 

  71. Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT. Sensitization of cancer cells treated with cytotoxic drugs to Fas-mediated cytotoxicity. J Nat Cancer Inst (1997) 89:783–789

    Article  PubMed  CAS  Google Scholar 

  72. Yoshihiro K, Zhou YW, Zhang XL, Chen TX, Tanaka S, Azuma E, Sakurai M. Fas/APO-1 (CD95)-mediated cytotoxicity is responsible for the apoptotic cell death of leukaemic cells induced by interleukin-2-activated T cells. Br J Haematol (1997) 96:147–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Debatin, KM. (1999). Activation of Apoptosis Pathways by Anticancer Drugs. In: Kaspers, G.J.L., Pieters, R., Veerman, A.J.P. (eds) Drug Resistance in Leukemia and Lymphoma III. Advances in Experimental Medicine and Biology, vol 457. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4811-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4811-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7180-9

  • Online ISBN: 978-1-4615-4811-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics