Abstract
A central issue in Neuroscience is how elementary properties of neurones and synapses are related with neuronal network computation, and ultimately with cognition and behaviour.1-3 In this chapter, I will consider neurones and synapses of the cerebellum, a brain structure of primary importance for co-ordinating movement.4-6 Figure 1 shows the basic neuronal organisation of the cerebellum, and its connections with some extracerebellar structures. Attention will be focused on the synapse between mossy fibres and granule cells (mf-GrC relay), since recent findings suggest that it may play a more important role for cerebellar computation than previously thought.
Keywords
- NMDA Receptor
- Granule Cell
- Synaptic Plasticity
- Neuronal Network
- Cerebellar Cortex
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
P.S. Churchland and T.J. Sejnowski, The Computational Brain, MIT Press, Cambridge MA (1992).
C. Koch and J.L. Davies, Large-Scale Neuronal Theories of the Brain, MIT Press, Cambridge MA (1996).
M.A. Arbib, Erdi P. and J. Szentagothai, Neural Organization: Structure, Function, and Dynamics, MIT Press, Cambridge MA (1998).
R. y Cajal, Histologie du System Nerveux de l’Homme et des Vertebres, Vol. II, Maloine, Paris (1911).
J.C. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer Verlag, Berlin (1967).
M. Ito, The Cerebellum and Neural Control, Raven Press, New York (1984).
L. Luciani, Il cervelletto: Nuovi studi di Fisiologia Normale e Pathologica, Le Monnier, Florence (1981).
G. Holmes, The cerebellum of man, Brain, 62:1 (1939).
V. Braitenberg and N. Onesto, The Cerebellar Cortex as a Timing Organ: Discussion of a Hypothesis, Proceedings of the 1st International Congress on Medical Cybernetics, p. 1–19, Giannini, Napes (1962).
V. Braitenberg and H. Preissl, Why is the output of the cerebellum inhibitory? Behay. Brain Sci. 15:715 (1992).
D. Marr, A theory of cerebellar cortex, J. Physiol., 202:437 (1969).
J.S. Albus, A theory of cerebellar function, Math. Biosc., 10:25 (1971).
M. Ito, Long-term depression, Annu. Rev. Neurosci. 12:85 (1989).
E. De Shutter, Cerebellar long-terni depression might normalize excitation of Purkinje cells: a hypothesis, Trends in Neurosci., 18:291 (1995).
M. Arbib, C.C. Boylls, and P. Dev, Neural models of spatial perception and the control of movement. In Cybernetics and Bionics, eds W.D. Keidel, w. Handler, M. Spreng, p. 216–231, Munich (1974).
C.C. Boylls, A theory of cerebellar function with applications to locomotion: I. The physiological role of climbing fiber inputs in anterior lobe operation. Tch. rep. no. 75C 6, Amherst, MA: Computer and Science department, University of Massachussets at Amherst, 1975.
J.R. Bloedel, Functional heterogeneity with stuctural homogeneity: how does the cerebellum operate?, Behay. Brain Sci., 15:666 (1992).
J-S Lou and J.R. Bloedel, Responses of sagittally aligned Purkinje cells during perturbed locomotion: relation of climbing fiber activation to simple spike modulation, J. Neurophysiol., 78:1820 (1992)
R. Llinas and J.P. Welsh, On the cerebellum and motor learning, Curr. Opin. Neurobiol., 3:958 (1993).
J.P. Welsh, E.J. Lang, I. Sugihara, and R. Llinas, Dynamic organization of motor control within the olivocerebellar system, Nature, 374:453 (1995).
B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates Inc., Sunderland Massachussets, (1992).
R. Llinas, The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system functions, Science, 242:1654 (1988).
C. Koch and I. Segev, Methods in Neuronal Modeling, MIT Press, London (1998).
T. McKenna, J. Davies and S.F. Zornetzer, Single Neuron Computation, Academic Press, London (1992).
T.V.P. Bliss and G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361:31 (1993).
D.O. Hebb, The Organization of the Behavior. Wiley, New York (1949).
E. D’Angelo, Integration and stotage of sensory-motor information: computation in the cerebellum, Human and Machine Perception: Information Fusion, ed. V Cantoni et al., Plenum Press, New York (1997).
E. D’Angelo, Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors, J. Physiol., 484:397 (1995).
E. D’Angelo, P. Rossi, S. Armano, and V. Taglietti, Evidence for NMDA and mGlu receptor dependent long-term potentiation of mossy fibre - granule cell transmission in rat cerebellum,.J. Neurophysiol., in press (1999).
E. D’Angelo, P. Rossi, Integrated regulation of signal coding and plasticity by NMDA receptors at a central synapse, Neural plasticity 6:8–16 (1998).
P. Rossi, E. D’Angelo, and V. Taglietti, Differential long-lasting potentiation of the NMDA and nonNMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule cells, Eur. J. Neurosci., 8:1182 (1996).
F. Gabbiani, J. Midtgaard, and T. Knoepfel, Synaptic interation in a model of cerebellar granule cells, J. Neurophysiol., 72:999 (1994).
E. D’Angelo, G. De Filippi, P. Rossi, and V. Taglietti, Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action ofa persistent sodium current. J Neurophysiol 80, 493 (1998).
E. D’Angelo, G. Naldi, and P. Rossi., A compartmentl model of the cerebellar granule cell, Cell Modelling and Cell Signalling, ECMBM, Heidelberg (1996).
S.G. Bricley, S.G. Cull-Candy, and M. Fanant, Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA-A receptors, J Physiol. (Lond) 497, 753–759.
H. Monyer, N. Burnashev, D.J. Laurie, B. Sackmann, P.H. Seeburg, Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529 (1994).
S.G. Cull-Candy, S.G. Brickley, C. Misra, D. Feldmeyer, A. Moniyama, and M. Fanant, NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacol. 37:1369 (1998).
H. Kadotani, T. Hirano, M. Masugi, K. Nakamura, K. Nakao, M. Katsuki, and S. Nakanishi. Motor discoordination results from combined gene disruption of NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J. Neurosci. 16:7859 (1996).
R. Sprengel, B. Suchanek, C. Amico, R. Brusa, N. Burnashev, A. Rozov, O. Hvalby, V. Jensen, O. Paulsen, P. Andersen, J.J. Kim, R.F. Thompson, W. Sun, L.C. Webster, S.G.N. Grant, J. Eilers, A. Konnerth, J. Li, J.O. McNamara, and P.H. Seeburg, Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92:279 (1998).
R. Maex, B.P. Vos, and E. Deshutter, Dynamics of a detailed model of the granular layer of the cerebellum, Soc. Neurosci. Abs. 433.15 (1996).
J. Midtgard, Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro, J Physiol,. 457:329 (1992).
C.D. Aizenman, P.B. Manis, D.J. Linden, Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827 (1998).
S.G. Lisberger, T.A. Pavelko, and D.M. Broussard, Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of leaning, J. Neurophysiol,. 72:974 (1994).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer Science+Business Media New York
About this chapter
Cite this chapter
D’Angelo, E. (1999). The Emerging Properties of Neuronal Networks: Focus on the Cerebellum. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds) Human and Machine Perception 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4809-6_5
Download citation
DOI: https://doi.org/10.1007/978-1-4615-4809-6_5
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-7179-3
Online ISBN: 978-1-4615-4809-6
eBook Packages: Springer Book Archive