The Emerging Properties of Neuronal Networks: Focus on the Cerebellum

  • Egidio D’Angelo


A central issue in Neuroscience is how elementary properties of neurones and synapses are related with neuronal network computation, and ultimately with cognition and behaviour.1-3 In this chapter, I will consider neurones and synapses of the cerebellum, a brain structure of primary importance for co-ordinating movement.4-6 Figure 1 shows the basic neuronal organisation of the cerebellum, and its connections with some extracerebellar structures. Attention will be focused on the synapse between mossy fibres and granule cells (mf-GrC relay), since recent findings suggest that it may play a more important role for cerebellar computation than previously thought.


NMDA Receptor Granule Cell Synaptic Plasticity Neuronal Network Cerebellar Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.S. Churchland and T.J. Sejnowski, The Computational Brain, MIT Press, Cambridge MA (1992).Google Scholar
  2. 2.
    C. Koch and J.L. Davies, Large-Scale Neuronal Theories of the Brain, MIT Press, Cambridge MA (1996).Google Scholar
  3. 3.
    M.A. Arbib, Erdi P. and J. Szentagothai, Neural Organization: Structure, Function, and Dynamics, MIT Press, Cambridge MA (1998).Google Scholar
  4. 4.
    R. y Cajal, Histologie du System Nerveux de l’Homme et des Vertebres, Vol. II, Maloine, Paris (1911).Google Scholar
  5. 5.
    J.C. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer Verlag, Berlin (1967).Google Scholar
  6. 6.
    M. Ito, The Cerebellum and Neural Control, Raven Press, New York (1984).Google Scholar
  7. 7.
    L. Luciani, Il cervelletto: Nuovi studi di Fisiologia Normale e Pathologica, Le Monnier, Florence (1981).Google Scholar
  8. 8.
    G. Holmes, The cerebellum of man, Brain, 62:1 (1939).CrossRefGoogle Scholar
  9. 9.
    V. Braitenberg and N. Onesto, The Cerebellar Cortex as a Timing Organ: Discussion of a Hypothesis, Proceedings of the 1st International Congress on Medical Cybernetics, p. 1–19, Giannini, Napes (1962).Google Scholar
  10. 10.
    V. Braitenberg and H. Preissl, Why is the output of the cerebellum inhibitory? Behay. Brain Sci. 15:715 (1992).Google Scholar
  11. 11.
    D. Marr, A theory of cerebellar cortex, J. Physiol., 202:437 (1969).Google Scholar
  12. 12.
    J.S. Albus, A theory of cerebellar function, Math. Biosc., 10:25 (1971).CrossRefGoogle Scholar
  13. 13.
    M. Ito, Long-term depression, Annu. Rev. Neurosci. 12:85 (1989).CrossRefGoogle Scholar
  14. 14.
    E. De Shutter, Cerebellar long-terni depression might normalize excitation of Purkinje cells: a hypothesis, Trends in Neurosci., 18:291 (1995).CrossRefGoogle Scholar
  15. 15.
    M. Arbib, C.C. Boylls, and P. Dev, Neural models of spatial perception and the control of movement. In Cybernetics and Bionics, eds W.D. Keidel, w. Handler, M. Spreng, p. 216–231, Munich (1974).Google Scholar
  16. 16.
    C.C. Boylls, A theory of cerebellar function with applications to locomotion: I. The physiological role of climbing fiber inputs in anterior lobe operation. Tch. rep. no. 75C 6, Amherst, MA: Computer and Science department, University of Massachussets at Amherst, 1975.Google Scholar
  17. 17.
    J.R. Bloedel, Functional heterogeneity with stuctural homogeneity: how does the cerebellum operate?, Behay. Brain Sci., 15:666 (1992).Google Scholar
  18. 18.
    J-S Lou and J.R. Bloedel, Responses of sagittally aligned Purkinje cells during perturbed locomotion: relation of climbing fiber activation to simple spike modulation, J. Neurophysiol., 78:1820 (1992)Google Scholar
  19. 19.
    R. Llinas and J.P. Welsh, On the cerebellum and motor learning, Curr. Opin. Neurobiol., 3:958 (1993).CrossRefGoogle Scholar
  20. 20.
    J.P. Welsh, E.J. Lang, I. Sugihara, and R. Llinas, Dynamic organization of motor control within the olivocerebellar system, Nature, 374:453 (1995).CrossRefGoogle Scholar
  21. 21.
    B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates Inc., Sunderland Massachussets, (1992).Google Scholar
  22. 22.
    R. Llinas, The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system functions, Science, 242:1654 (1988).CrossRefGoogle Scholar
  23. 23.
    C. Koch and I. Segev, Methods in Neuronal Modeling, MIT Press, London (1998).Google Scholar
  24. 24.
    T. McKenna, J. Davies and S.F. Zornetzer, Single Neuron Computation, Academic Press, London (1992).MATHGoogle Scholar
  25. 25.
    T.V.P. Bliss and G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361:31 (1993).CrossRefGoogle Scholar
  26. 26.
    D.O. Hebb, The Organization of the Behavior. Wiley, New York (1949).Google Scholar
  27. 27.
    E. D’Angelo, Integration and stotage of sensory-motor information: computation in the cerebellum, Human and Machine Perception: Information Fusion, ed. V Cantoni et al., Plenum Press, New York (1997).Google Scholar
  28. 28.
    E. D’Angelo, Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors, J. Physiol., 484:397 (1995).Google Scholar
  29. 29.
    E. D’Angelo, P. Rossi, S. Armano, and V. Taglietti, Evidence for NMDA and mGlu receptor dependent long-term potentiation of mossy fibre - granule cell transmission in rat cerebellum,.J. Neurophysiol., in press (1999).Google Scholar
  30. 30.
    E. D’Angelo, P. Rossi, Integrated regulation of signal coding and plasticity by NMDA receptors at a central synapse, Neural plasticity 6:8–16 (1998).CrossRefGoogle Scholar
  31. 31.
    P. Rossi, E. D’Angelo, and V. Taglietti, Differential long-lasting potentiation of the NMDA and nonNMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule cells, Eur. J. Neurosci., 8:1182 (1996).CrossRefGoogle Scholar
  32. 32.
    F. Gabbiani, J. Midtgaard, and T. Knoepfel, Synaptic interation in a model of cerebellar granule cells, J. Neurophysiol., 72:999 (1994).Google Scholar
  33. 33.
    E. D’Angelo, G. De Filippi, P. Rossi, and V. Taglietti, Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action ofa persistent sodium current. J Neurophysiol 80, 493 (1998).Google Scholar
  34. 34.
    E. D’Angelo, G. Naldi, and P. Rossi., A compartmentl model of the cerebellar granule cell, Cell Modelling and Cell Signalling, ECMBM, Heidelberg (1996).Google Scholar
  35. 35.
    S.G. Bricley, S.G. Cull-Candy, and M. Fanant, Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA-A receptors, J Physiol. (Lond) 497, 753–759.Google Scholar
  36. 36.
    H. Monyer, N. Burnashev, D.J. Laurie, B. Sackmann, P.H. Seeburg, Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529 (1994).CrossRefGoogle Scholar
  37. 37.
    S.G. Cull-Candy, S.G. Brickley, C. Misra, D. Feldmeyer, A. Moniyama, and M. Fanant, NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacol. 37:1369 (1998).CrossRefGoogle Scholar
  38. 38.
    H. Kadotani, T. Hirano, M. Masugi, K. Nakamura, K. Nakao, M. Katsuki, and S. Nakanishi. Motor discoordination results from combined gene disruption of NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J. Neurosci. 16:7859 (1996).Google Scholar
  39. 39.
    R. Sprengel, B. Suchanek, C. Amico, R. Brusa, N. Burnashev, A. Rozov, O. Hvalby, V. Jensen, O. Paulsen, P. Andersen, J.J. Kim, R.F. Thompson, W. Sun, L.C. Webster, S.G.N. Grant, J. Eilers, A. Konnerth, J. Li, J.O. McNamara, and P.H. Seeburg, Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92:279 (1998).CrossRefGoogle Scholar
  40. 40.
    R. Maex, B.P. Vos, and E. Deshutter, Dynamics of a detailed model of the granular layer of the cerebellum, Soc. Neurosci. Abs. 433.15 (1996).Google Scholar
  41. 41.
    J. Midtgard, Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro, J Physiol,. 457:329 (1992).Google Scholar
  42. 42.
    C.D. Aizenman, P.B. Manis, D.J. Linden, Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827 (1998).CrossRefGoogle Scholar
  43. 43.
    S.G. Lisberger, T.A. Pavelko, and D.M. Broussard, Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of leaning, J. Neurophysiol,. 72:974 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Egidio D’Angelo
    • 1
    • 2
  1. 1.Istituto di Fisiologia GeneraleUniversità di PaviaPaviaItaly
  2. 2.Istituto di Fisica della Materia (INFM)Pavia UnitPaviaItaly

Personalised recommendations