Advertisement

Neural Elements in Pineal Organs of Vertebrates

  • Tetsuji Sato
  • Hiroki Fujieda
  • Kenjiro Wake

Abstract

Phylogenetically, the pineal organ changes from a photoreceptor organ endowed with true photoreceptor cells to an endocrine gland influenced by light stimuli perceived in the retina. In poikilothermic vertebrates, the pineal complex contains photoreceptor cells which are synaptically connected to intrapineal second-order neurons. The axons of these second-order neurons constitute the central pinealofugal innervation which connects the pineal complex with various nuclei located in the diencephalon and mesencephalon. Changes in the structure and function of pineal photoreceptors are accompanied by the reduction of intrapineal neurons in the course of evolution. In mammals, pinealocytes receive information from a biological clock system—present inside the suprachiasmatic nucleus of the hypothalamus—entrained by the photoperiod and have lost structural and functional characteristics of photoreceptor cells. Nevertheless, mammalian pinealocytes are considered as derivatives of the pineal photoreceptor cells of anamniotic vertebrates (Oksche, 1971; Collin, 1971). This functional shift of the pinealocyte has been confirmed by immunohistochemical and biochemical studies showing that neuroendocrine pinealocytes of mammals express photoreceptor-specific molecules which otherwise are synthesized only by true (retinal and pineal) photoreceptor cells (Korf et al, 1986; Kramm et al., 1993). Concomitantly with the loss of the direct photosensitivity of pinealocytes, the central pinealofugal innervation is reduced in mammals. Alternatively, the pineal gland of mammals receives a conspicuous autonomic innervation (Cajal, 1904; Kappers, 1960), which is essential for the regulation of melatonin metabolism in these species. The autonomic nervous system also innervates the pineal organ of reptiles and birds, but in these species it appears to be less important than in mammals. Autonomic nerve fibers are scarce or even absent in the pineal organ of poikilothermic vertebrates such as fishes and amphibians (see Vollrath, 1981 for details).

Keywords

Pineal Gland Superior Cervical Ganglion Pineal Organ Melatonin Synthesis Pineal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonow, A. (1925). Zur Frage von dem Bau der Glandula pinealis. Anat. Anz. 60, 21–31.Google Scholar
  2. Arstila, V. A. (1967). Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Neuroendocrinol. Suppl. 2, 1–101.CrossRefGoogle Scholar
  3. Axelrod, J. (1974). The pineal gland: a neurochemical transducer. Science 184, 1341–1348.PubMedCrossRefGoogle Scholar
  4. Axelrod, J., Wurtman, R. J., and Winget, C. M. (1964). Melatonin synthesis in the hen pineal gland and its control by light. Nature 201, 1134.PubMedCrossRefGoogle Scholar
  5. Benson, R. and Satterfield, V. (1975). Ultrastructural characteristics of mouse pinealocytes following optic enucleation or continuous illumination. Anat. Rec. 181, 312.Google Scholar
  6. Bignami, A. and Dahl, D. (1974). Astrocyte-specific protein and neuroglial differentiation. An immunofluores-cence study with antibodies to glial fibrillary acidic protein. J. Comp. Neurol. 153, 27–37.PubMedCrossRefGoogle Scholar
  7. Binkley, S. A., Riebman, J. B., and Reilly, K. B. (1978). The pineal gland: A biological clock in vitro. Science 202,1198–1201.PubMedCrossRefGoogle Scholar
  8. Bishop, A. E., Carlei, F., Lee, V., Trojanowski, J., Marangos, P. J., Dahl, D., and Polak, J. M. (1985). Combined immunostaining of neurofilaments, neuron specific enolase, GFAP and S-100. A possible means for assessing the morphological and functional status of the enteric nervous system. Histochemistry 82, 93–97.PubMedCrossRefGoogle Scholar
  9. Blumfield, M. and Tapp, E. (1970). Measurements of pineal parenchymal cells and their nuclei in the albino rat at different ages. Acta Morphol. Neerl-Scand. 8, 1–8.PubMedGoogle Scholar
  10. Bubenik, G. A., Brown, G. M., Uhlir, I., and Grota, L. J. (1974). Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. Brain Res. 81, 233–242.PubMedCrossRefGoogle Scholar
  11. Cajal, R. S. (1904). Textura del Sistema Nervioso del Hobmre y de los Vertebrados. II, 2nd part, Moya,Madrid.Google Scholar
  12. Calvo, J. and Boya, J. (1978). Embryonic development of the pineal gland of the chicken (Gallus gallus). Acta Anat. 101, 289–303.PubMedCrossRefGoogle Scholar
  13. Calvo, J. and Boya, J. (1979). Ultrastructural study of the embryonic development of the pineal gland of the chicken (Gallus gallus). Acta Anat. 103, 39–73.PubMedCrossRefGoogle Scholar
  14. Calvo, J. and Boya, J. (1983). Postnatal development of cell types in the rat pineal gland. J. Anat. 137, 185–195.PubMedGoogle Scholar
  15. Calvo, J. and Boya, J. (1984). Ultrastructure of the pineal gland in the adult rat. J. Anat. 138, 405–409.PubMedGoogle Scholar
  16. Cimino, M., Hartman, B., and Moore, B. (1977). Immunohistochemical localization of 14–3–2 protein during de-velopment in chick and rat. Proc. Int. Soc. Neurochem. 6, 304.Google Scholar
  17. Collin, J. P. (1971). Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In “The Pineal Gland” (G. E. M. Wolstenholme and J. Knight, Eds.), pp. 79–125. Churchill-Livingstone, Edinburgh.Google Scholar
  18. Collin, J. P. and Oksche, A. (1981). Structural and functional relationships in the nonmammalian pineal gland. In “The Pineal Gland” (R. J. Reiter, Ed.), Vol. 1, Anatomy and Biochemistry, pp. 27–67. CRC Press, Boca Raton, Florida.Google Scholar
  19. Cozzi, B., Mikkelsen, J. D., Ravault, J. P., and Moller, M. (1992). Neuropeptide Y (NPY) and C-flanking peptide of NPY in the pineal gland of normal and ganglionectomized sheep. J. Corn. Neurol. 316, 238–250.CrossRefGoogle Scholar
  20. Dafny, N., McClung, R., and Strada, S. J. (1975). Neurophysiological properties of the pineal body. 1. Field poten-tials. Life Sci. 16, 611–620.PubMedGoogle Scholar
  21. Deguchi, T. (1979a). Circadian rhythm of serotonin N- acetyltransferase activity in organ culture of chicken pineal gland. Science 203, 1245–1247.CrossRefGoogle Scholar
  22. Deguchi, T. (1979b). A circadian oscillator in cultured cells of chicken pineal gland. Nature 282, 94–96. Deguchi, T. (1981). Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature 290, 702–704.Google Scholar
  23. Dennis, M. J., Ziskind-Conhaim, L., and Harris, A. J. (1981). Development of neuromuscular junctions in rat em-bryos. Devl. Biol. 81, 266–279.CrossRefGoogle Scholar
  24. Ekblad, E., Edvinsson, L., Wahlestedt, C., Uddman, R., Hakanson, R., and Sundler, F. (1984). Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regal. Pept. 8, 225–235.CrossRefGoogle Scholar
  25. Ekström, P. and Vanecek, J. (1992). Localization of 2-[125]iodomelatonin binding sites in the brain of the atlantic salmon, Salmo salar L. Neuroendocrinology 55, 529–537.CrossRefGoogle Scholar
  26. Eng, L. F., Vanderhaeghen, J. J., Bignami, A., and Gerstl, B. (1971). An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351–354.PubMedCrossRefGoogle Scholar
  27. Erickson, P. and Moore, B. (1980). Investigation of the axonal transport of three acidic soluble proteins (14–3–2, 14–3--3, and S-100) in the rabbit visual system. J. Neurochem. 35, 232–241.PubMedCrossRefGoogle Scholar
  28. Falcon, J. (1979). Unusual distribution of neurons in the pike pineal organ. In “The Pineal Gland of Vertebrates including Man” (J. A. Kappers and P. Pévet, Eds.), Progr. in Brain Research, Vol. 52, pp. 89–91. Elsevier, Amsterdam.Google Scholar
  29. Freund, D., Arendt, J., and Vollrath, L. (1977). Tentative immunohistochemical demonstration of melatonin in the rat pineal gland. Cell Tissue Res. 181, 239–244.PubMedCrossRefGoogle Scholar
  30. Fujieda, H., Sato, T., Shi, J., and Wake, K. (1997). Remodeling of pineal epithelium in the fetal rat as delineated by immunohistochemistry of laminin and cadherin. Cell Tissue Res. 237,263–274CrossRefGoogle Scholar
  31. Gaston, S. and Menaker, M. (1968). Pineal function: The biological clock in the sparrow? Science 160, 1125–1127. Ghandour, M., Langley, O., and Keller, A. (1981). A comparative immunohistological study of cerebellar enolase. Exp. Brain Res. 41, 271–279.Google Scholar
  32. Gown, A. M. and Gabbiani, G. (1984). Intermediate-sized (10-nm) filaments in human tumours. In “Advances in Immunohistochemistry” (R. A. DeLellis, Ed.), pp. 89–109. Masson, New York.Google Scholar
  33. Hartmann, F. (1957). Uber die Innervation der Epiphysis cerebri einiger Saugetiere. Z. Zellforsch. 45, 416–429. Hetherington, T. (1981). Morphology of the pineal organ in the salamander, Ensatina eschscholtzi. J. Morphol. 169, 191–206.Google Scholar
  34. Jahn, R., Schiebler, W., Ouimet, C., and Greengard, P. (1985). A 38000 dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA 82, 4137–4141.PubMedCrossRefGoogle Scholar
  35. Kappers, J. A. (1960). The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch. 52, 163–215.PubMedCrossRefGoogle Scholar
  36. Kappers, J. A. (1965). Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. In “Structure and Function of the Epiphysis Cerebri” (J. A. Kappers and J. P. Schack, Eds.), Progr. in Brain Research, vol. 10, pp. 87–153. Elsevier, Amsterdam.CrossRefGoogle Scholar
  37. Kenny, G. C. T. (1961). The “nervus conarii” of the monkey. An experimental study. J. Neuropath. Exp. Neurol. 20, 563–570.PubMedCrossRefGoogle Scholar
  38. Klein, D. C. (1985). Photoneural regulation of the mammalian pineal gland. In “Photoperiodism, Melatonin and the Pineal Gland” (D. Evered and S. Clark, Eds.), pp. 38–56. Pitman, London.Google Scholar
  39. Knaus, P., Betz, H., and Rehm, H. (1986). Expression of synaptophysin during postnatal development of the mouse brain. J. Neurochem. 47, 1302–1304.PubMedCrossRefGoogle Scholar
  40. Korf, H. W. (1974). Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri, with special reference to the pineal tract. Cell Tissue Res. 755, 475–489.Google Scholar
  41. Korf, H. W., Liesner, R., Meissl, H., and Kirk, A. (1981). Pineal complex of the clawed toad, Xenopus laevis Daud: Structure and function. Cell Tissue Res. 216, 113–130.PubMedCrossRefGoogle Scholar
  42. Korf, H. W., Oksche, A., Ekstrom, P., van Veen, T., Zigler, J. S., Gery, I., Stein, P., and Klein, D. C. (1986). S-antigen immunocytochemistry. In “Pineal and Retinal Relationships” (P. O’Brien and D. C. Klein, Eds.), pp. 343–355. Academic Press, New York.Google Scholar
  43. Korf, H. W., Sato, T., and Oksche, A. (1990). Complex relationships between the pineal organ and the medial habenular nucleus-pretectal region of the mouse as revealed by S-antigen immunocytochemistry. Cell Tissue Res. 261, 493–500.PubMedCrossRefGoogle Scholar
  44. Korf, H. W., Zimmerman, N. H., and Oksche, A. (1982). Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res. 222, 243–260.PubMedCrossRefGoogle Scholar
  45. Kramm, C. M., De Grip, W. J., Korf, H. W. (1993). Rod-opsin immunoreaction in the pineal organ of the pigmented mouse does not indicate the presence of a functional photopigment. Cell Tissue Res. 274,71–78.PubMedCrossRefGoogle Scholar
  46. Kuwano, R., Iwanaga, T., Nakajima, T., Masuda, T., and Takahashi, Y. (1983). Immunocytochemical demonstration of hydroxyindole 0-methyltransferase (HIOMT), neuron-specific enolase (NSE) and S-100 protein in the bovine pineal. Brain Res. 274, 171–175.PubMedCrossRefGoogle Scholar
  47. Laitinen, J. T. and Saavedra, J. M. (1990). Characterization of melatonin receptors in the rat suprachiasmatic nu-clei: Modulation of affinity with cations and guanine nucleotides. Endocrinology 126, 2110–2115.PubMedCrossRefGoogle Scholar
  48. Laudon, M. and Zisapel, N. (1986). Characterization of central melatonin receptors using 125I-melatonin. FEBS Lett. 197, 9–12.PubMedCrossRefGoogle Scholar
  49. Lundberg, J. M., Terenius, L., Hökfelt, T., Muffing, C. R., Tatemoto, K., Mutt, V., Polak, J., Bloom, S., and Goldstein, M. (1982). Neuropeptide Y-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol. Scand. 116, 477–480.PubMedCrossRefGoogle Scholar
  50. Marangos, P., Zis, A., Clark, R., and Goodwin, F. (1978). Neuronal, non-neuronal and hybrid forms of enolase in brain: Structural properties of neuronal and glial isoenzymes of brain enolase. Brain Res. 150, 117–133.PubMedCrossRefGoogle Scholar
  51. Marangos, P., Polak, J., and Pearse, A. (1982). Neuron-specific enolase: A probe for nervous and neuroendocrine cells. TINS June, 193;196.Google Scholar
  52. Marburg, O. (1909). Zur Kenntnis der normalen und pathologischen Histologie der Zirbeldruse. Die Adipositas cerebralis. Arb. Neurol. Inst. Univ. Wien 17, 217–279.Google Scholar
  53. Matsuura, T. and Herwig, H. J. (1981). Histochemical and ultrastructural study of the nervous elements in the pineal organ of the eel, Anguilla anguila. Cell Tissue Res. 216, 545–555.PubMedCrossRefGoogle Scholar
  54. McClung, R. and Dafny, N. (1975). Neurophysiological properties of the pineal body. II. Single unit recording. Life Sci. 16, 621–6628.PubMedGoogle Scholar
  55. McClure, C. D., McMillan, P. J., and Miranda, A. C. (1986). Demonstration of differential immunohistochemical localization of the neuron-specific enolase antigen in rat pinealocytes. Amer. J. Anat. 176, 461–467.PubMedCrossRefGoogle Scholar
  56. Mikkelsen, J. D. and Moller, M. (1988). Vasoactive intestinal peptide in the hypothalamohypophysial system of the mongolian gerbil. J. Com. Neurol. 273, 87–98.CrossRefGoogle Scholar
  57. Moller, M. (1978). Presence of a pineal nerve (Nervus pinealis) in the human fetus; a light and electron microscopical study of the innervation of the pineal gland. Brain Res. 154, 1–12.PubMedCrossRefGoogle Scholar
  58. Moller, M., Phansuwan-Pujito, P., Pramanlkijja, S., Kotchabhakdi, N., and Govitrapong, P. (1994). Innervation of the cat pineal gland by neuropeptide Y-immunoreactive nerve fibers: an experimental immunohistochemical study. Cell Tissue Res. 276, 545–550.PubMedCrossRefGoogle Scholar
  59. Mellgard, K. and Moller, M. (1973) On the innervation of the human fetal pineal gland. Brain Res. 52, 428–432. Moore, R. Y. (1978). Neuronal control of pineal function in mammals and birds. J. Neural Trans. 13, 47–58.Google Scholar
  60. Navone, F., Jahn, R., DiGioia, G., Stukenbrok, H., Greengard, P., and De Camilli, P. (1986). Protein p38: an inte-gral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol. 103, 2511–2527.PubMedCrossRefGoogle Scholar
  61. Nürnberger, F. and Korf, H. W. (1981). Oxytocin-and vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog, Erinaceus europaeus L. Cell Tissue Res. 220, 87–97.PubMedCrossRefGoogle Scholar
  62. Ohba, S., Wake, K., Ohnishi, R., and Ueck, M. (1979). Neue Befunde am pinealen Sinnesapparat von funa, Carassius gibelio langsdorfi (Teleostei). Verh. Anat. Ges. 73, 953–959.Google Scholar
  63. Oksche, A. (1971). Sensory and glandular elements of the pineal organ. In “The Pineal Gland” (G. E. W. Wolstenholme and J. Knight, Eds.), pp. 127–146. Churchill-Livingstone, Edinburgh.Google Scholar
  64. Oksche, A. and Hartwig, H. G. (1979). Pineal sense organs - components of photoneuroendocrine systems. In “The Pineal Gland of Vertebrates including Man” (J. A. Kappers and P. Pévet, Eds.), Progr. in Brain Research, Vol. 52, pp. 113–130. Elsevier, Amsterdam.Google Scholar
  65. Oksche, A., Korf, H. W., and Rodriguez, E. M. (1987). Pinealocytes as photoneuroendocrine units of neuronal origin: concepts and evidence. In “Advances in Pineal Research” (R. J. Reiter and F. Fraschini, Eds.), Vol. 2, pp. 1–18. John Libbey, London, Paris.Google Scholar
  66. Omura, Y. (1980). Histochemical and ultrastructural studies on the nervous organization of the pineal organ of the ayu, Plecoglossus altivelis. Bull. Jap. Soc. Sci. Fish 46, 1483–1488.CrossRefGoogle Scholar
  67. Pastori, G. (1928). Ein bis jetzt noch nicht beschriebenes sympathisches Ganglion zum Nervus conarii sowie zur Vena magna Galenii. Z. Ges. Neurol. Psychial. 123, 81–90.CrossRefGoogle Scholar
  68. Pévet, P. (1977). On the presence of different populations of pinealocytes in the mammalian pineal gland. J. Neural. Transm. 40, 289–304.PubMedCrossRefGoogle Scholar
  69. Pines, G. (1927). Uber die Innervation der Epiphyse. Z. gesamt. Neurol. 11, 365–369.Google Scholar
  70. Quay, W. B. (1957). Cytochemistry of pineal lipids in rat and man. J. Histochem. Cytochem. 5, 145–153. Quay, W. B. (1958). Pineal blood content and its experimental modification. Am. J. Physiol. 195, 391–395.Google Scholar
  71. Quay, W. B. and Renzoni, A. (1966). Twenty-four hour rhythms in pineal mitotic activity and nuclear and nucleo-lar dimensions. Growth 30, 315–324.PubMedGoogle Scholar
  72. Rehm, H., Wiedenmann, B., and Betz, H. (1986). Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBOJ. 5, 535–541.Google Scholar
  73. Reppert, S. M., Weaver, D. R., Rivkees, S. A., and Stopa, E. G. (1988). Putative melatonin receptors in a human biological clock. Science 242, 78–81.PubMedCrossRefGoogle Scholar
  74. Romijn, H. J. (1973). Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L). I. A light microscopic investigation. Z. Zellforsch. 139, 473–485.PubMedCrossRefGoogle Scholar
  75. Romijn, H. J. (1975) Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L). III. An electron microscopic investigation of the innervation. Cell Tissue Res. 157, 25–51.PubMedCrossRefGoogle Scholar
  76. Sasek, C. A. and Zigmond, R. E. (1989). Localization of vasoactive intestinal peptide-and peptide histidine isoleucine amide-like immunoreactivities in the rat superior cervical ganglion and its nerve trunks. J. Com. Neurol. 280, 522–532.CrossRefGoogle Scholar
  77. Sato, T., Deguchi, T., Ichikawa, T., Fujieda, H., and Wake, K. (1991). Localization of hydroxyindole 0-methyltransferase-synthesizing cells in bovine epithalamus: immunocytochemistry and in-situ hybridization. Cell Tissue Res. 263, 413–418.PubMedCrossRefGoogle Scholar
  78. Sato, T. and Ebisawa, S. (1988). A pineal ganglion associated with the pineal tract in the domestic fowl. Cell Tissue Res. 252, 287–292.PubMedGoogle Scholar
  79. Sato, T., Ebisawa, S., and Wake, K. (1988). Neuronal degeneration in the pineal ganglion during the post-hatching development. Cell Tissue Res. 254, 25–30.PubMedCrossRefGoogle Scholar
  80. Sato, T., Kaneko, M., Fujieda, H., Deguchi, T., and Wake, K. (1994). Analysis of the heterogeneity within bovine pineal gland by immunohistochemistry and in situ hybridization. Cell Tissue Res. 277, 201–209.PubMedCrossRefGoogle Scholar
  81. Sato, T., Kaneko, M., Ekataksin, W., and Wake, K. (1995). Expression of neuron-specific enolase in the pineal or-gan of the domestic fowl during post-hatching development. Cell Tissue Res. 279, 25–36.PubMedCrossRefGoogle Scholar
  82. Sato, T. and Wake, K. (1981). Organizations of the sensory and sympathetic nerves in the avian pineal organs. Jikeikai Med. J. 28(Suppl), 7–12.Google Scholar
  83. Sato, T. and Wake, K. (1983). Innervation of the avian pineal organ - A comparative study. Cell Tissue Res. 233, 237–264.PubMedCrossRefGoogle Scholar
  84. Sato, T. and Wake, K. (1984). Regressive post-hatching development of acetylcholinesterase-positive neurons in the pineal organs of Coturnix coturnix japonica and Gallus gallus. Cell Tissue Res. 237, 269–275.Google Scholar
  85. Sato, T. and Wake, K. (1986). Separation of the pineal vesicle from the wall of the third ventricle during the post-hatching development of the chicken. Cell Tissue Res. 244, 321–326.CrossRefGoogle Scholar
  86. Sato, T., Wake, K., Kramm, C., and Korf, H. W. (1990). Chicken pineal organs during post-hatching development: photoreceptor-specific characteristics and innervation. In “Neuroendocrinology: Quid Novi” (D. Gupta, H. A. Wollmann, and M. B. Ranke, Eds.), pp. 191–200. Brain Research Promotion, Tübingen, London.Google Scholar
  87. Schmechel, D., Brightman, M., and Goodwin, F. (1978). Brain enolase as specific markers of neuronal and glial cells. Science 199, 313–315.PubMedCrossRefGoogle Scholar
  88. Schmechel, D., Brightman, M., and Marangos, P. (1980). Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 190, 195–214.PubMedCrossRefGoogle Scholar
  89. Semm, P. and Vollrath, L. (1979). Electrophysiology of the guinea-pig pineal organ: sympathetic influenced cells responding differently to light and darkness. Neurosci. Lett. 12, 93–96.PubMedCrossRefGoogle Scholar
  90. Semm, P. and Vollrath, L. (1980). Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ. J. Neural. Transm. 47, 181–190.PubMedCrossRefGoogle Scholar
  91. Semm, P. and Vollrath, L. (1982). Alterations in the spontaneous activity of cells in the guinea pig pineal gland and visual system produced by pineal indoles. J. Neural. Transm. 53, 265–275.PubMedCrossRefGoogle Scholar
  92. Shiotani, Y., Yamano, M., Shiosaka, S., Emson, P. C., Hillyard, C. J., Girgis, S., and Macintyre I. (1986). Distribution and origins of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)- and neuropeptide Y (NPY)-containing nerve fibers in the pineal gland of gerbils. Neurosci. Lett. 70, 187–192.PubMedCrossRefGoogle Scholar
  93. Tapp, E. and Blumfield, M. (1970). The parenchymal cells of the rat pineal gland. Acta Morphol. Neerl-Scand. 8, 119–131.PubMedGoogle Scholar
  94. Trapp, B., Marangos, P., and Webster, H. (1981). Immunocytochemical localization and developmental profile of neuron-specific enolase during differentiation. Brain Res. 220, 121–130.PubMedCrossRefGoogle Scholar
  95. Ueck, M. and Kobayashi, H. (1972). Vergleichende Untersuchungen über acetylcholinesterasehaltige Neurone im Pinealorgan der Vögel. Z. Zellforsch. 129, 140–160.PubMedCrossRefGoogle Scholar
  96. Vanecek, J. (1988). Melatonin binding sites. J. Neurochem. 51, 1436–1440.PubMedCrossRefGoogle Scholar
  97. Vollrath, L. (1981). The pineal organ. In “Handb. Mikrosk. Anat. Mensch.” (A. Oksche and L. Vollrath, Eds.), VI/7, Springer, Berlin Heidelberg New York.Google Scholar
  98. Wake, K. (1973). Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Z. Zellforsch. 145, 287–298.CrossRefGoogle Scholar
  99. Wake, K., Ueck, M., and Oksche, A. (1974). Acetylcholinesterase-containing nerve cells in the pineal complex and subcommissural area of the frogs, Rana ridibunda and Rana esculenta. Cell Tissue Res. 154, 423–442.PubMedCrossRefGoogle Scholar
  100. Weaver, D. R., Rivkees. S. A., and Reppert, S. M. (1988). Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J. Neurosci. 9, 2581–2590.Google Scholar
  101. Wiedenmann, B. and Franke, W. W. (1985). Identification and localization of synaptophysin, an integral membrane glycoprotein of M 38000 characteristic of presynaptic vesicles. Cell 41, 1017–1028.PubMedCrossRefGoogle Scholar
  102. Wolfe, D. E. (1965). The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. In “Structure and Function of the Epiphysis Cerebri” (J. A. Kappers and J. R Schadé, Eds.), Progr. in Brain Research, Vol. 10, pp. 332–386. Elsevier, Amsterdam.CrossRefGoogle Scholar
  103. Zhang, E. T., Mikkelsen, J. D., and Moller, M. (1991). Tyrosine hydroxylase-and neuropeptide Y-immunoreactive nerve fibers in the pineal complex of untreated rats and rats following removal of the superior cervical ganglia. Cell Tissue Res. 265, 63–71.PubMedCrossRefGoogle Scholar
  104. Zimmerman, N. H. and Menaker, M. (1975). Neural connections of sparrow pineal: Role in circadian control of activity. Science 190, 477–479.PubMedCrossRefGoogle Scholar
  105. Zimmerman, B. L. and Tso, M. O. M. (1975). Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J. Cell Biol. 66, 60–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Tetsuji Sato
    • 1
  • Hiroki Fujieda
    • 1
  • Kenjiro Wake
    • 1
  1. 1.Department of Anatomy School of MedicineTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations