Skip to main content

Recent Developments in Asymmetric Hydrogenation with Chiral Ru(II) Catalysts and Synthetic Applications to Biologically Active Molecules

  • Chapter
Current Trends in Organic Synthesis

Abstract

Among all the possible methods of creating optically active compounds, enantioselective catalysis using chiral transition metal complexes is the most effective methods since a small amount of chiral material can, in principle, produce a large amount of optically active product. The enantioselective hydrogenation of prochiral C=C and C=X (X=N,O) double bonds constitutes a powerful technology to establish chirality at stereogenic carbon atoms. This tool has enabled the chemist to compete successfully with nature in the creation of enantiomerically pure compounds. The Rh(I) complexes bearing chiral tertiary phosphines are remarkable catalysts in the hydrogenation of dehydroamino acids1,2,3,4. Optimisation of the conditions made it possible for the industrial production of several amino acids5. In spite of such impressive achievments and improvments in the design of new ligands for rhodium(I) catalysts , the scope of asymmetric hydrogenation is not so wide. A breakthrough came by the discovery of hexacoordinated ruthenium catalysts containing the highly effective axially symmetric BINAP ligand 7,8 . A disguishing feature of theses catalysts is their universality, they are suitable for enantioselective hydrogenation of wide range of substrates9. In the application of such technology to the synthesis optically active compounds in perfumery, food industry and drugs research, chemists are facing the task of designing broad libraries of chiral catalysts. Therefore developments of chemistry which allows preparation of wide range of chiral ruthenium catalysts is highly desirable for a rapid screening. As part of our research programm we have initiated and developed a novel and general route for the preparation of chiral ruthenium (II) catalysts. Such chemistry and the usefulness of these catalysts will be briefly presented with the successful development of enantioselective hydrogenation of prochiral substrates including olefins and functionalized ketones. Moreover, several applications in the synthesis of various complex biologically active molecules will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.E. Koenig in Asymmetric Catalysis, J.E. Morrison, Ed. Academic Press, New York, Vol.5 (1985).

    Google Scholar 

  2. H. Takaya, T. Ohta and R. Noyori Catalytic Asymmetric Synthesis, I. Ojima, ed., Chapter 1, VCH publisher, New York (1993).

    Google Scholar 

  3. R. Noyori Asymmetrie Catalysis in Organic Synthesis, Chapter 2, p. 16, J. Wiley, New York (1994).

    Google Scholar 

  4. J.P. Genet Advanced Asymmetric Synthesis, Chapter 8, G.R. Stephenson, Ed., p. 146, Chapman and Hall, London (1996).

    Chapter  Google Scholar 

  5. H.B. Kagan, Bull. Soc. Chim. Fr., 846, (1988).

    Google Scholar 

  6. K. Inogushi, S. Sakuraba and K. Achiwa Synlett, 169, (1992).

    Google Scholar 

  7. T. Ikariya, I. Ishii, H. Kawano, T. Arai, M. Saburi, S. Yoshikawa and S. Akutagawa J. Chem. Soc. Chenu Commun., 922, (1985).

    Google Scholar 

  8. R. Noyori, M. Ohta, Y. Hsiao, M. Kitamura, H. Takaya J. Am. Chem. Soc., 108, 7117, (1986).

    Article  CAS  Google Scholar 

  9. Reviews: a) R. Noyori Chem. Soc. Review, 18, 2, 187, (1989); b) R. Noyori Science, 248, 1194, (1990); c) R. Noyori and H. Takaya Acc. Chem. Res., 23, 345, (1990); d) H. Takaya, T. Ohta, K. Mashima and R. Noyori Pure Appl. Chem., 62, 1135, (1990); e) R. Noyori Tetrahedron, 50, 4259, (1994); f) R. Noyori and S. Hashiguchi Acc. Chem. Res., 30, 97, (1997).

    Google Scholar 

  10. T. Ohta, Y. Tonomura, K. Nozaki, H. Takaya, K. Mashima Organometallics, 15, 6, 1521, (1996).

    Article  Google Scholar 

  11. T. Ohta, H. Takaya, R. Noyori Inorg. Chem. 27, 566, (1988).

    Article  CAS  Google Scholar 

  12. Review: J.P. Genet in Reduction Organic Synthesis, Am. Chem. Soc. Symposium Series 641, Abdel F. Magid, ed., Chapter 2, 31, (1996).

    Google Scholar 

  13. J.P. Genet, S. Mallart, C. Pinel, S. Jugé and J.A. Laffitte Tetrahedron: Asymmetry, 2, 43, (1991); b) J.P. Genet, S. Mallart, C. Pinel, S. Thorimbert, S. Jugé, J.A. Laffitte Tetrahedron: Asymmetry, 555, (1991).

    Article  CAS  Google Scholar 

  14. J.P. Genet, C. Pinel, S. Mallart, S. Jugé, N. Cailhol and J.A. Laffitte Tetrahedron Lett., 33, 5343, (1992).

    Article  CAS  Google Scholar 

  15. J.P. Genet, C. Pinel, V. Ratovelomanana-Vidal, S. Mallart, X. Pfister, M.C.Caño de Andrade, J.A. Laffitte Tetrahedron: Asymmetry, 5, 665, (1994).

    Article  CAS  Google Scholar 

  16. J.P. Genet, V. Ratovelomanana-Vidal, X. Pfister, M.C.Caño de Andrade, J.A. Laffitte, S. Darses, C. Pinel, L. Bischoff, C. Galopin Tetrahedron: Asymmetry, 5, 675, (1994).

    Article  CAS  Google Scholar 

  17. M. Burk, T. P. Harper and C.S. Kalberg J. Am. Chem. Soc., 117, 4423, (1995).

    Article  CAS  Google Scholar 

  18. D. Blanc, J.C. Henry, V. Ratovelomanana-Vidal and J.P. Genet Tetrahedron Lett., 38, 6603, (1997).

    Article  CAS  Google Scholar 

  19. J.P. Genet, V. Ratovelomanana-Vidal unpublished results.

    Google Scholar 

  20. J.C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.P. Genet, T.M. Dolgina, I.P. Beletskaya Tetrahedron Lett., 39, 3473 (1998).

    Article  CAS  Google Scholar 

  21. Pfizer, Sandwich Drug Discoveries (October 1997)

    Google Scholar 

  22. J. Lastenet, S. Coulon, S. Roussiasse, M. Bulliard, B. Laboue PPG SIPSY, (1997).

    Google Scholar 

  23. S. Roland, Ph.D. Thesis Pierre and Marie Curie University(1995)

    Google Scholar 

  24. J.P. Genet, J.C. Galland, unpublished results.

    Google Scholar 

  25. H. Takaya, T. Ohta, N. Sayo, H. Kumobayashi, S. Akutagaria, S. Inoue, I. Kasahara, R. Noyori, J. Am. Chem. Soc., 109, 1596 (1987).

    Article  CAS  Google Scholar 

  26. I. Gautier, V. Ratovelomanana-Vidal, P. Savignac, J.P. Genet Tetrahedron Lett., 37, 7721, (1996).

    Article  CAS  Google Scholar 

  27. J.P. Tranchier, V. Ratovelomanana-Vidal, J.P. Genet, S. Tong, T. Cohen Tetrahedron Lett., 38, 2951,(1997).

    Article  CAS  Google Scholar 

  28. J.P. Genet, V. Ratovelomanana-Vidal, M.C. Caño de Andrade, X. Pfister, P. Guerreiro, J.Y. Lenoir Tetrahedron Lett., 36, 4801, (1995).

    CAS  Google Scholar 

  29. P. Guerreiro, P. Bertus, V. Ratovelomanana-Vidal, J.P. Genet unpublished results.

    Google Scholar 

  30. E. Coulon, S. Duprat de Paule, V. Ratovelomanana-Vidal, M.C. Caño de Andrade, J.P. Genet unpublished results.

    Google Scholar 

  31. J.P. Genet, M.C. Caño de Andrade, V. Ratovelomanana-Vidal Tetrahedron Lett., 36, 2663, (1995).

    Google Scholar 

  32. M.C. Caño de Andrade, V. Ratovelomanana-Vidal, unpublished results.

    Google Scholar 

  33. A. Girard, C. Greek, D. Ferroud, J.P. Genet Tetrahedron Lett., 37, 7967, (1997).

    Article  Google Scholar 

  34. Review: C. Greek, J.P. Genet Synlett, 741, (1997).

    Google Scholar 

  35. C. Greek, L. Bischoff, J.P. Genet Tetrahedron: Asymmetry, 6, 1989, (1995).

    Article  Google Scholar 

  36. C. Greek, F. Ferreira, J.P. Genet Tetrahedron Lett., 37, 203, (1996); b) F. Ferreira, C. Greek, J.P. Genet Bull. Soc. Chim. Fr., 134, 615, (1997).

    Google Scholar 

  37. For some other developments of this chemistry with industrial perspectives see review: R. Schmidt, E.A. Broger, M. Cereghetti, Y. Crameri, J. Foricher, M. Lalonde, R.K. Müller, M. Scalone, G. Schoettlel, U. Zutter Pure & Appl. Chem., 68, 1, 131 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Genet, J.P. (1999). Recent Developments in Asymmetric Hydrogenation with Chiral Ru(II) Catalysts and Synthetic Applications to Biologically Active Molecules. In: Scolastico, C., Nicotra, F. (eds) Current Trends in Organic Synthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4801-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4801-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7175-5

  • Online ISBN: 978-1-4615-4801-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics