Catalytic Enantioselective Reactions of Aldimines Using Chiral Lewis Acids

  • Shū Kobayashi


Asymmetric Mannich-type reactions provide useful routes for the synthesis of optically active β-amino ketones or esters, which are versatile chiral building blocks in the preparation of many nitrogen-containing biologically important compounds. While several diastereoselective Mannich-type reactions have already been reported, very little is known about the enantioselective versions. In addition, asymmetric Mannich-type reactions using small amounts of chiral sources have not been reported, when we started these research efforts.


Enantiomeric Excess Amino Alcohol Cerium Ammonium Nitrate Amino Ester Zirconium Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.(a)
    Narasaka, K. Synthesis 1991, 1. (b) Santelli, M.; Pons, J.-M. Lewis Acids and Selectivity in Organic Synthesis; CRC Press: Boca Raton; 1995.Google Scholar
  2. 2.
    Cf. (a) Nugent, W. A. J. Am. Chem. Soc. 1992, 114, 2768. (b) Bedeschi, P.; Casolari, S.; Costa, A. L.; Tagliavini, E.; Umani-Ronchi, A. Tetrahedron Lett. 1995, 36, 7897. (c) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262, and references cited therein.CrossRefGoogle Scholar
  3. 3.
    Rare earths (Sc, Y, Ln) are also promising candidates for the catalytic activations of aldimines. (a) Kobayashi, S.; Araki, M.; Ishitani, H.; Nagayama, S.; Hachiya, I. Synlett 1995, 233. (b) Kobayashi, S.; Araki, M.; Yasuda, M. Tetrahedron Lett. 1995, 36, 5773. See also Ref. 4.Google Scholar
  4. 4.
    Ishitani, H.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357.CrossRefGoogle Scholar
  5. 5.
    Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153.CrossRefGoogle Scholar
  6. 6.
    Kronenthal, D. R.; Han, C. Y.; Taylor, M. K. J. Org. Chem. 1982, 47, 2765.CrossRefGoogle Scholar
  7. 7.
    Kunz, H.; Schanzenbach, D. Angew. Chem., Int. Ed. Engl. 1989, 28, 1068.CrossRefGoogle Scholar
  8. 8.
    Kobayashi, S.; Ueno, M.; Ishitani, H. J. Am. Chem. Soc. 1998, 120, 431.CrossRefGoogle Scholar
  9. 9.
    We also observed similar dramatic changes in diastereoselectivities in chiral tin(II) mediated asymmetric aldol reactions. Kobayashi, S.; Horibe, M. Synlett 1994, 147, and references cited therein.Google Scholar
  10. 10.(a)
    Bruncko, M.; Schlingloff, G.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 1483. (b) Escalante, J.; Juaristi, E. Tetrahedron Lett. 1995, 36, 4397. (c) Nicolaou, K. C; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. Engl. 1994, 33, 15.CrossRefGoogle Scholar
  11. 11.(a)
    Waldmann, H. Synthesis 1994, 535. (b) Waldmann, H. in Organic Synthesis Highlights II; Waldmann, H., Ed.; VCH: Weinheim, 1995; pp. 37-48. (c) Weinreb, S. M. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, pp. 401-449.Google Scholar
  12. 12.(a)
    Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264. (b) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749. (c) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 10520.CrossRefGoogle Scholar
  13. 13.(a)
    Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807. (b) Kerwin, Jr., J. F.; Danishefsky, S. Tetrahedron Lett. 1982, 23, 3739.CrossRefGoogle Scholar
  14. 14.
    Danishefsky, S.; Bednarski, M.; Izawa, T.; Maring, C. J. Org. Chem. 1984, 49, 2290.CrossRefGoogle Scholar
  15. 15.
    Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. Engl. 1998, 37, 979.CrossRefGoogle Scholar
  16. 16.(a)
    Clive, D. L. J.; Bergstra, R. J. J. Org. Chem. 1991, 56, 4976. (b) Sugawasa, S.; Yamada, S.-I.; Narahashi, M. J. Pharm. Soc. Jpn. 1951, 71, 1345.CrossRefGoogle Scholar
  17. 17.(a)
    Strecker, A. Ann. Chem. Pharm. 1850, 75, 27. (b) Shafran, Y. M.; Bakulev, V. A.; Mokrushin, V. S. Russian Chem. Rev. 1989, 58, 148.CrossRefGoogle Scholar
  18. 18.(a)
    Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon: Oxford, 1989. (b) Williams, R.M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889. (c) Duthaler, R.O. Tetrahedron 1994, 50, 1539.Google Scholar
  19. 19.
    Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M. J. Am. Chem. Soc. 1996, 118, 4910.CrossRefGoogle Scholar
  20. 20.
    Commercially available (Aldrich, etc.). (a) Luijten, J. G. A.; van der Kerk, G. J. M. Investigations in the Field of Organotin Chemistry; Tin Research Institute: Greenford, 1995; p. 106. (b) Tanaka, M. Tetrahedron Lett. 1980,27, 2959. (c) Harusawa, S.; Yoneda, R.; Omori, Y.; Kurihara, T. Tetrahedron Lett. 1987, 28, 4189.Google Scholar
  21. 21.
    Cox, P. J.; Wang, W.; Snieckus, V. Tetrahedron Lett. 1992, 33, 2253.CrossRefGoogle Scholar
  22. 22.(a)
    Brown, J. M.; Chapman, A. C.; Harper, R.; Mowthorpe, D. J.; Davies, A. G.; Smith, P. J. J. Chem. Soc, Dalton. 1972, 338. (b) Davies, A. G.; Kleinschmidt, D. C; Palan, P. R.; Vasishtha, S. C. J. Chem. Soc. (C). 1971, 3972.Google Scholar
  23. 23.
    Quite recently, we have developed scandium triflate-catalyzed Strecker-type reactions of aldehydes, amines, and Bu3SnCN (achiral reactions). In these reactions, complete recovery of tin compounds towards environmentally-friendly chemical processes has been achieved. Kobayashi, S.; Busujima, T.; Nagayama, S. J. Chem. Soc, Chem. Commun. 1998, 981.Google Scholar
  24. 24.
    Cacchi, S.; Misiti, D.; Torre, F. L. Synthesis 1980, 243.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Shū Kobayashi
    • 1
  1. 1.Graduate School of Pharmaceutical SciencesThe University of TokyoHongo, Bunkyo-ku, TokyoJapan

Personalised recommendations