Advertisement

The Atropisomer-Selective Synthesis of Biologically Active and Synthetically Useful Chiral Biaryls

  • Gerhard Bringmann
  • Stefan Tasler

Abstract

Axially chiral biaryls constitute a rapidly growing class of structurally, biosynthetically, and pharmacologically intriguing natural products, among them dimeric sesquiterpenes like mastigophorene A (1),1 but also mixed, constitutionally unsymmetric biaryls like the naphthylisoquinoline alkaloids,2 e.g. ancistrocladine (2)3 and dioncophylline A (3),4 some of them disposing of axial and centrochirality (Figure 1). As broad as their structural variety is the diversity of their sometimes most promising bioactivities, like nerve growth stimulating,1 antimalarial,5 or molluscicidal6 properties. Furthermore, axially chiral biaryl reagents or ligands are of increasing value in stereoselective synthesis.7

Keywords

Ring Opening Kinetic Resolution Ring Cleavage Fukui Function Stereoselective Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Fukuyama and Y. Asakawa, Novel neurotrophic isocuparane-type sesquiterpene dimers, mastigophorenes A, B, C and D, isolated from the liverwort Mastigophora diclados, J. Chem. Soc, Perkin Trans. 1 2737 (1991).Google Scholar
  2. 2.a)
    G. Bringmann and F. Pokorny, The naphthylisoquinoline alkaloids, in: The Alkaloids, G.A. Cordeil, ed., Academic Press, New York 46: 127 (1995); b) G. Bringmann, G. François, L. Aké Assi, and J. Schlauer, The alkaloids of Triphyophyllum peltatum (Dioncophyllaceae), Chimia 52:18 (1998).Google Scholar
  3. 3.
    T.R. Govindachari, K. Nagarajan, P.C. Parthasarathy, T.G. Rajagopalan, H.K. Desai, G. Kartha, S.L. Chen, and K. Nakanishi, Absolute stereochemistry of ancistrocladine and ancistrocladinine, J. Chem. Soc, Perkin Trans. 1 1413 (1974).CrossRefGoogle Scholar
  4. 4.
    G. Bringmann, M. Rübenacker, J.R. Jansen, D. Scheutzow, and L. Aké Assi, On the structure of the Dioncophyllaceae alkaloids dioncophylline A (‘triphyophylline’) and ‘Omethyl-triphyphophylline’, Tetrahedron Lett. 31: 639 (1990).CrossRefGoogle Scholar
  5. 5.
    G. François, G. Timperman, J. Holenz, L. Aké Assi, T. Geuder, L. Maes, J. Dubois, M. Hanocq, and G. Bringmann, Naphthylisoquinoline alkaloids exhibit strong growth-inhibiting activities against Plasmodium falciparum and P. berghei in vitro-structure-activity relationships of dincophylline C, Ann. Trop. Med. Parasitol. 90: 115 (1996).Google Scholar
  6. 6.
    G. Bringmann, J. Holenz, L. Aké Assi, C. Zhao, and K. Hostettmann, Molluscicidal activity of naphthylisoquinoline alkaloids from Triphyophyllum and Ancistrocladus species, Planta Med. 62: 556 (1996).CrossRefGoogle Scholar
  7. 7.
    C. Rosini, L. Franzini, A. Raffaelli, and P. Salvadori, Synthesis and applications of binaphthylic C2-symmetry derivatives as chiral auxiliaries in enantioselective reactions, Synthesis 503 (1992).Google Scholar
  8. 8.
    C. Ito, Y. Thoyama, M. Omura, I. Kajiura, and H. Furukawa, Alkaloidal constituents of M array a koenigii. Isolation and structural elucidation of novel binary carbazolequinones and carbazole alkaloids, Chem. Pharm. Bull. 41: 2096 (1993).CrossRefGoogle Scholar
  9. 9.a)
    T.G. Gant and A.I. Meyers, The chemistry of 2-oxazolines (1985-present), Tetrahedron 50: 2297 (1994); b) B.H. Lipshutz, F. Kayser, and Z.-P. Liu, Asymmetrische Synthese von Biarylen durch intramolekulare oxidative Kupplung von Cyanocuprat-Zwischenstufen, Angew. Chem. 106:1962 (1994); Angew. Chem. Int. Ed. Engl. 33:1842 (1994); c) T. Watanabe and M. Uemura, Stereoselective synthesis of O,O-dimethylkorupensamine A via palladium(0)-mediated cross-coupling of a planar chiral (arene)Cr(CO)3 complex with naphthylboronic acid, J. Chem. Soc, Chem. Commun. 871 (1998); d) K.S. Feldman and R.S. Smith, Ellagitannin chemistry. First total synthesis of 2,3-and 4,6-coupled ellagitannin pendunculagin, J. Org. Chem. 61:2606 (1996); and references cited therein.CrossRefGoogle Scholar
  10. 10.
    G. Bringmann, R. Walter, and R. Weirich, The directed synthesis of biaryl compounds: modern concepts and strategies, Angew. Chem. 102: 1006 (1990); Angew. Chem. Int. Ed. Engl. 29:977 (1990).CrossRefGoogle Scholar
  11. 11.
    G. Bringmann, R. Walter, and R. Weirich, Synthesis of axially chiral compounds, part B.2.: Biaryls, in: Methods of Organic Chemistry (Houben Weyl) 4. Ed., G. Helmchen, R.W. Hoffmann, J. Mulzer, and E. Schaumann, eds., Thieme, Stuttgart E21a: 567 (1995).Google Scholar
  12. 12.
    G. Bringmann, T. Hartung, L. Göbel, O. Schupp, C.L.J. Ewers, B. Schöner, R. Zagst, K. Peters, H.G. von Schnering, and C. Burschka, Synthesis and structure of benzonaphthopyranones, useful bridged model precursors for stereoselective biaryl synthesis, Liebigs Ann. Chem. 225 (1992).Google Scholar
  13. 13.
    G. Bringmann and O. Schupp, Stereocontrolled ‘twisting’ of biaryl systems — a new pathway to axial chirality, S. Afr. J. Chem. 47: 83 (1994).Google Scholar
  14. 14.
    G. Bringmann and M. Breuning, unpublished results.Google Scholar
  15. 15.
    G. Bringmann, M. Breuning, S. Busemann, J. Hinrichs, T. Pabst, R. Stowasser, S. Tasler, A. Wuzik, W.A. Schenk, J. Kümmel, D. Seebach, and G. Jaeschke, Metalassisted synthesis and application of axially chiral biaryl systems, in: Selective Reactions of Metal-Activated Molecules, H. Werner and P. Schreier, eds.,Vieweg, Braunschweig 141 (1998).Google Scholar
  16. 16.
    G. Bringmann and T. Hartung, Atropo-enantioselective biaryl synthesis by stereocontrolled cleavage of configuratively labile lactone-bridged precursors using chiral H-nucleophiles, Tetrahedron 49: 7891 (1993).CrossRefGoogle Scholar
  17. 17.
    G. Bringmann and S. Busemann, Quantumchemical calculation of CD spectra: the absolute configuration of biologically active natural products, in: Natural Product Analysis, P. Schreier, M. Herderich, H.U. Humpf, and W. Schwab, eds., Vieweg, Wiesbaden 195(1998).Google Scholar
  18. 18.
    G. Bringmann, H. Busse, U. Dauer, S. Güssregen, and M. Stahl, Structure and enantiomerization of helically twisted lactone-bridged biaryls: a theoretical study, Tetrahedron 51: 3149 (1995).CrossRefGoogle Scholar
  19. 19.
    G. Bringmann, S. Güssregen, D. Vitt, and R. Stowasser, The atropisomer-selective ring cleavage of helically distorted, configuratively unstable biaryl lactones with a chiral metallated Af-nucleophile — the complete PM3 mechanistic course and its video presentation, J. Mol. Model. 4: 165 (1998).CrossRefGoogle Scholar
  20. 20.
    G. Bringmann and D. Vitt, Stereoselective ring-opening reaction of axially prostereogenic biaryl lactones with chiral oxazaborolidines: an AM1 study of the complete mechanistic course, J. Org. Chem. 60: 7674 (1995).CrossRefGoogle Scholar
  21. 21.
    G. Bringmann and T. Hartung, Synthesis and enantiomerization of a nonracemic 2-hydroxy-2’-biphenylcarbaldehyde, a probable intermediate in the atropoenantioselective ring opening of biaryl lactones, Liebigs Ann. Chem. 313 (1994).Google Scholar
  22. 22.
    G. Bringmann, M. Breuning, H. Endress, D. Vitt, K. Peters, and E.-M. Peters, Biaryl hydroxy aldehydes as intermediates in the metal-assisted atropo-enantioselective reduction of biaryl lactones: structures and aldehyde-lactol equilibria, Tetrahedron, in press (1998).Google Scholar
  23. 23.
    G. Bringmann, D. Vitt, J. Kraus, and M. Breuning, The ortho-hydroxy-ortho‘-fovmyl biaryl / lactol equilibrium: quantumchemical studies on structure and dynamics, Tetrahedron, in press (1998).Google Scholar
  24. 24.
    G. Bringmann and M. Breuning, The atropo-enantioselective reduction of configuratively unstable biaryl hydroxy aldehydes — a novel approach to axially chiral biaryls, Synlett 634 (1998).Google Scholar
  25. 25.
    G. Bringmann and J. Hinrichs, Efficient kinetic resolution of a racemic 7-membered biaryl lactone: enantioselective synthesis of 2,2’-dihydroxymethyl-l,1’-binaphthyl, Tetrahedron: Asymmetry 8: 4121 (1997).CrossRefGoogle Scholar
  26. 26.
    W.A. Schenk, J. Kümmel, I. Reuther, N. Burzlaff, A. Wuzik, O. Schupp, and G. Bringmann, Atropenantio-selective ring opening of biaryl thionolactones using [CpRu((S,S)-CHIRAPHOS)]+ as a chiral auxiliary, Eur. J. Inorg. Chem., submitted.Google Scholar
  27. 27.
    G. Bringmann, L. Göbel, K. Peters, E.-M. Peters, and H.G. von Schnering, Synthesis, structure, dynamics, and first atropisomer-selective cleavage of the chromium tricarbonyl complex of a lactone-bridged biaryl, Inorg. Chim. Acta 222: 255 (1994).CrossRefGoogle Scholar
  28. 28.
    G. Bringmann, R. Stowasser, and D. Vitt, Local and non-local DF calculation of the structure of the helically twisted l,3-dimethyl-(η6-chromiumtricarbonyl)-benzo-[b]naphtho[l,2-d]pyran-6-one: a comparison, J. Organomet. Chem. 520: 261 (1996).CrossRefGoogle Scholar
  29. 29.
    G. Bringmann, R. Stowasser, and L. Göbel, DF-studies on a’ stop and go’ rotor: steric and electronic factors determining the regio-and stereochemical position of a η6-Cr(CO)3 metal fragment on a helically distorted biaryl ligand, J. Organomet. Chem. 544: 7 (1997).CrossRefGoogle Scholar
  30. 30.
    G. Bringmann, R. Stowasser, A. Wuzik, D. Stalke, M. Pfeiffer, and W.A. Schenk, Application of the Fukui function: investigation of the reactivity of a [Cp*Ru] activated biaryllactone complex, Organometallics, in preparation.Google Scholar
  31. 31.
    G. Bringmann and J.R. Jansen, Stereocontrolled ring opening of axially prostereogenic biaryl lactones with hydrogen nucleophiles: directed synthesis of a dioncophylline A precursor and (optionally) its atropdiastereomer, Synthesis 825 (1991).Google Scholar
  32. 32.
    G. Bringmann and H. Reuscher, Atropdiastereoselective ring opening of bridged, ‘axial-prostereogenic’ biaryls: directed synthesis of (+)-ancistrocladisine, Angew. Chem. 101: 1725 (1989); Angew. Chem. Int. Ed. Engl. 28:1672 (1989).CrossRefGoogle Scholar
  33. 33.
    G. Bringmann, J. Holenz, R. Weirich, M. Rübenacker, C. Funke, M.R. Boyd, R.J. Gulakowski, and G. François, First synthesis of the antimalarial naphthylisoquinoline alkaloid dioncophylline C, and its unnatural anti-HIV dimer, jozimine C, Tetrahedron 54: 497 (1998).CrossRefGoogle Scholar
  34. 34.
    G. Bringmann and M. Ochse, unpublished results.Google Scholar
  35. 35.
    G. Bringmann, R. Walter, and C.L.J. Ewers, Diastereoselective ring opening of achiral bridged biaryls using chiral O- and N-nucleophiles: first atropo-enantioselective synthesis of (−)-4,4’-bis(orcinol), Synlett 581 (1991).Google Scholar
  36. 36.a)
    G. Bringmann, T. Pabst, S. Busemann, K. Peters, and E.-M. Peters, Atropoenantioselective synthesis of a simplified analog of mastigophorenes A and B, Tetrahedron 54: 1425 (1998); b) G. Bringmann and T. Pabst, unpublished results.CrossRefGoogle Scholar
  37. 37.
    G. Bringmann and M. Breuning, Enantioselective addition of diethylzinc to aldehydes using novel axially chiral 2-aminomethyl-l-(2’-hydroxyphenyl)naphthalene catalysts; Tetrahedron: Asymmetry 9: 667 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gerhard Bringmann
    • 1
  • Stefan Tasler
    • 1
  1. 1.Institut für Organische ChemieUniversität WürzburgWürzburgGermany

Personalised recommendations