Skip to main content

Transcriptional Regulation of the Ferritin H-Chain and Transferrin Receptor in Hematopoietic Cells

  • Chapter

Abstract

The mechanisms that regulate the ferritin and transferrin receptor (TfR) expression in response to variation in the cellular iron supply have been extensively studied and represent a model of coordinate post-transcriptional regulation. However, additional mechanisms are operative in hematopoietic cells where high levels of iron are required to sustain specific cell requirements. We investigated the transcriptional regulation of the two main molecules involved in iron metabolism i.e. TfR and ferritin, which are both upregulated during erythroid differentiation. Friend leukemia cells (FLCs) treated with heme or induced to terminally differentiate with dimethylsulfoxide (DMSO), were used as experimental model. By transfection experiments, we identified a minimum region of 77 nucleotides (nt) upstream the TATA box of the ferritin H-gene promoter able to confer transcriptional regulation to a reporter gene in heme-treated FLCs. The CCAAT element present in reverse orientation in this promoter region is necessary for gene activity and binds a protein complex, greatly enhanced in heme-treated FLCs, and containing the heteromeric and ubiquitous transcription factor NF-Y. Similarly we identified in the TfR gene promoter, a region of 500 base pairs (bp) starting from the transcription start site able to confer transcriptional inducibility in FLCs induced to differentiate by DMSO treatment. We conclude that transcriptional induction of both ferritin and TfR plays a relevant role in the regulation of the synthesis of these two molecules in erythroid cells and is not operative in other cell types (e.g. fibroblastic cell lines).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klausner RD, Rouault TA, Harford JB: Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 72: 15, 1993.

    Article  Google Scholar 

  2. Reuben RC, Rifkind RA, Marks PA. Chemically induced murine erythroleukemic differentiation. Biochim Biophys Acta 605: 325, 1980.

    PubMed  CAS  Google Scholar 

  3. Coccia EM, Profita V, Fiorucci G, Romeo G, Affabris E, Testa U, Hentze MW. Battistini A: Modulation of ferritin H-chain expression in Friend erythroleukemia cells: transcriptional and translational regulation by hemin. Mol Cell Biol 12: 3015, 1992.

    PubMed  CAS  Google Scholar 

  4. Coccia EM, Stellacci E, Perrotti E, Marziali G, Battistini. A Differential regulation of ferritin expression in Friend leukemia cells by iron. J Biol Reg Horn Agents 8: 81, 1994.

    CAS  Google Scholar 

  5. Coccia EM, Stellacci E, Orsatti R, Testa U, Battistini A: Regulation of ferritin H-chain expression in differentiating Friend leukemia cells. Blood 86: 1570, 1995.

    PubMed  CAS  Google Scholar 

  6. Coccia EM, Stellacci E, Marziali G, Orsatti R, Perrotti E, Del Russo N, Testa U, Battistini A: Iron regulation of transferrin receptor and ferritin expression in differentiating Friend leukemia cells. Proceedings of the 9th Simposium “Molecular Biology of Hematopoiesis”. Edited by Abraham N.G., Asano S., Brittinger G., and Shadduck R. Plenum Press, New York. 1996.

    Google Scholar 

  7. Greiser-Wilke I, Ostertag W, Goldfarb P, Lang A, Furusawa M, Conscience JF: Inducibility of spleen focus forming virus by BrdUrd is controlled by the differentiated state of the cell. Proc Natl Acad Sci USA 75: 2995, 1981.

    Article  Google Scholar 

  8. Marziali G, Perrotti E, Ilari R, Testa U, Coccia EM, Battistini A: Transcriptional regulation of ferritin H-gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated FLCs and during monocyte to macrophage differentiation. Mol Cell Biol 17: 1387, 1997.

    PubMed  CAS  Google Scholar 

  9. Wigler M, Sweet R, Sim GK, Wold B, Pollicer A, Lacy E, Maniatis T, Silverstain S. Axel R: Transformation of mammalian cells with genes from procaryotes and eucaryotes. Proc Natl Acad Sci USA 77: 3570, 1979.

    Google Scholar 

  10. Hentze MW, Keim S, Papadopoulos P, Brien SO’, Modi W, Drysdale J, Leonard WJ, Harford JB, Klausner RD: Cloning, characterization, expression, and chromosomal localization of a human ferritin heavy chain gene. Proc Natl Acad Sci USA 83: 7226, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Hentze MW, Caughman SW, Rouault TA, Barriocanal J, Dancis A. Harford JB, Klausner RD: Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238: 1570, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Glisin V, Crkvenjakov R, Byus C: Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13: 2633, 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Mantovani R: A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res 26: 1135, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Coustry F, Maity SN, de Crombrugghe B: Studies on transcription activation by multimeric CCAAT-binding factor CBF. J Biol Chem 270: 468, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Kim In-S, Sinha S, de Crombrugghe B, Maity SN: Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol 16: 4003, 1996.

    PubMed  CAS  Google Scholar 

  16. Sinha S, Maity SN, Lu J, de Crombrugghe B: Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP 2 and HAP 3. Proc Natl Acad Sci USA 92: 1624, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Benoist C, Mathis D: Regulation of major histocompatibility complex class-II genes: X, Y, and other letters of the alphabet. Annu Rev Immunol 8: 681, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Mantovani R, Pessara U, Tronche F, Li XY, Knapp AM, Pasquali JL, Benoist C, Mathis D: Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcription. EMBO J 11: 3315, 1992.

    PubMed  CAS  Google Scholar 

  19. Roy B, Lee AS: Transduction of calcium through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp/BiP promoter. Mol Cell Biol 15: 2263, 1995.

    PubMed  CAS  Google Scholar 

  20. Chang ZF, Liu CJ: Human thymidine kinase CCAAT-binding protein is NF-Y, whose A subunit expression is serum-dependent in human IMR-90 diploid fibroblasts. J Biol Chem 269: 17893, 1994.

    PubMed  CAS  Google Scholar 

  21. Katula KS, Wright KL, Paul H, Surman DR, Nuckolls FJ, Smith JW, Ting JPY, Yates J, Cogswell JP: Cyclin-dependent kinase activation and S-phase induction of the cyclin B1 gene are linked through the CCAAT elements. Cell Growth Differ 8: 811, 1997.

    PubMed  CAS  Google Scholar 

  22. Ponka P: Tissue-specific regulation of iron metabolism and heme-synthesis: distinct control mechanisms in erythroid cells. Blood 89: 1, 1997

    PubMed  CAS  Google Scholar 

  23. Testa U, Petrini M, Quaranta MT, Pelosi-Testa E, Mastroberardino G, Camagna A, Boccoli G, Sargiacomo M, Isacchi G, Cozzi A, Arosio P, Peschle C: Iron upmodulates the expression of TfRs during monocyte-macrophage maturation. J Biol Chem 264: 13181, 1989.

    PubMed  CAS  Google Scholar 

  24. Battistini A, Marziali G, Albertini R, Habetswallner D, Bulgarini D, Coccia EM, Fiorucci G, Romeo G, Orsatti R, Testa U, Affabris E, Peschle C, Rossi GB: Positive modulation of hemoglobin, heme, and transferrin receptor synthesis by murine interferon-α and-β in differentiating Friend cells: pivotal role of heme synthesis. J Biol Chem 266: 528, 1991.

    PubMed  CAS  Google Scholar 

  25. Battistini A, Coccia EM, Bulgarini D, Scalzo S, Fiorucci F, Romeo G, Affabris E, Testa U, Rossi GB, Peschle C: Intracellular heme coordinately modulates globin chains synthesis, transferrin receptor number and ferritin content in differentiating Friend erythroleukemia cells. Blood 78: 2098, 1991.

    PubMed  CAS  Google Scholar 

  26. Beaumont C, Seyhan A, Yachou AK, Grandchamp B, Jones R: Mouse ferritin H subunit gene. Functional analysis of the promoter and identification of an upstream regulatory element active in erythroid cells. J Biol Chem 269: 20281, 1994.

    PubMed  CAS  Google Scholar 

  27. Marziali G, Perrotti E, Ilari R, Coccia EM, Mantovani R, Testa U, Battistini A: The activity of the CCAAT-box binding factor NF-Y is modulated through the regulated expression of its a subunit during monocyte to macrophage differentiation: regulation of tissue-specific genes through a ubiquitous transcription factor. Blood 93: 519, 1999.

    PubMed  CAS  Google Scholar 

  28. Sinha S, Kim IS, Sohn KY, de Crombrugghe B, Maity SN: Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol Cell Biol 16: 328, 1996.

    PubMed  CAS  Google Scholar 

  29. Bellorini M, Lee DK, Dantonel JK, Zemzoumi K, Roeder RG, Tora L, Mantovani R: CCAAT-binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues. Nucleic Acids Res 25: 2174, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Busfield SJ, Tilbrook PA, Callus BA, Spadaccini A, Kuhn L, Klinken SP: Complex regulation of transferrin receptors during erythropoietin-induced differentiation of J2E erythroid cells. Elevated transcription and mRNA stabilisation produce only a modest rise in protein content. Eur J Biochem 249: 77, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Rao K, Harford JB, Rouault T, McClelland A, Ruddle FH, Klausner DD: Transcriptional regulation by iron of the gene for the transferrin receptor. Mol Cell Biol 6: 236, 1986.

    PubMed  CAS  Google Scholar 

  32. Chan LL, Gerhardt EM: Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cells. J Biol Chem 267: 8254, 1992.

    PubMed  CAS  Google Scholar 

  33. Chan RYY, Seiser C, Schulman HM, Kuhn LC, Ponka P: Regulation of transferrin-receptor mRNA expression: distinct regulatory feature in erythroid cells. Eur J Biochem 220: 683, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Chan L-NL, Gerhardt EM: Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cells. J Biol Chem 267: 8254, 1992.

    PubMed  CAS  Google Scholar 

  35. Kronke M, Leonard WJ, Depper JM, Greene WC: Sequential expression of genes involved in human T lymphocyte growth and differentiation. J Exp Med 161: 1593, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Sieweke MH, Tekotte H, Frampton J, Graf T: MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85: 49, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Ouyang Q, Bommakanti M, Miskimins WK: A mitogen-responsive promoter region that is synergis-tically activated through multiple signalling pathways. Mol Cell Biol 13: 1796, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marziali, G., Perrotti, E., Ilari, R., Coccia, E.M., Testa, U., Battistini, A. (1999). Transcriptional Regulation of the Ferritin H-Chain and Transferrin Receptor in Hematopoietic Cells. In: Abraham, N.G., Tabilio, A., Martelli, M., Asano, S., Donfrancesco, A. (eds) Molecular Biology of Hematopoiesis 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4797-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4797-6_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7173-1

  • Online ISBN: 978-1-4615-4797-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics