Genetic Heterogeneity in Ewing Tumors and Neuroblastomas

  • P. F. Ambros
  • I. M. Ambros
  • G. Amann
  • C. M. Hattinger
  • R. Ladenstein
  • R. Kerbl
  • S. Rumpler
  • A. Luegmayr
  • H. Gadner
Chapter

Abstract

The aim of this study was to investigate genetic changes occurring in Ewing Tumors (ETs) and Neuroblastomas (NBs). We analyzed whether the same genetic alteration, i.e. the deletion of genetic material at chromosomal region 1p36, occurs in both tumor types at a comparable rate and whether these aberrations are acquired during tumor progression. Consecutive tumor samples from the same patients at different stages of the disease and topographically different samples from single tumors were studied. Furthermore, we focused on the detection of the status of the MYCN oncogene in NBs. Deletions at 1p36 are found in ETs and NBs at a comparable frequency (approx. 20%) and account for an unfavorable prognosis in localized disease.1,2,3 In ETs, the loss of 1p36 material was frequently observable in a sub-population of cells and is therefore regarded as a later event in the tumor development. In NBs, it seemed more likely that the aberrations found in a subgroup of tumors (i.e. dellp, MYCN amplification, and gain of 17q) are very early on initial events as virtually all tumor cells within an individual tumor were thought to bear the respective genetic aberra- tion. This view is supported by the results obtained so far.4 However, recent data indicate that deletions at 1p36 and also MYCN amplifications can be acquired during tumor progression (Ambros et al. in press), because sub-populations of cells showing these aberrations interspersed between cells not showing these aberrations exist in evolutionary early tumors.

Keywords

Oncol Sarcoma Stratification Paraffin Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambros PF, Ambros IM, Strehl S, Bauer S, Luegmayr A, Kovar H, et al. Regression and progression in neuroblastoma. Does genetics predict tumour behaviour? Eur.J.Cancer 1995; 31A: 510–515.PubMedCrossRefGoogle Scholar
  2. 2.
    Caron H, van Sluis P, de KJ, Bokkerink J, Egeler M, Laureys G, et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N.Engl.J.Med. 1996; 334: 225–230.PubMedCrossRefGoogle Scholar
  3. 3.
    Hattinger CM, Rumpler S, Strehl S, Ambros IM, Zoubek A, Pötschger U, Gadner H, Ambros PF. Prognostic impact of deletions at 1p36 and numerical aberrations in Ewing Tumors. Genes Chromosomes Cancer 1999; 24: 243–254.PubMedCrossRefGoogle Scholar
  4. 4.
    Brodeur GM, Hayes FA, Green AA, Casper JT, Wasson J, Wallach S, et al. Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res. 1987; 47: 4248–4253.PubMedGoogle Scholar
  5. 5.
    Douglass EC, Green AA, Hayes FA, Etcubanas E, Horowitz M, Wilimas JA. Chromosome 1 abnormalities: a common feature of pediatric solid tumors. J.Natl.Cancer Inst. 1985; 75: 51–54.PubMedGoogle Scholar
  6. 6.
    Atkin NB. Chromosome 1 aberrations in cancer. Cancer Genet.Cytogenet. 1986; 21: 279–285.PubMedCrossRefGoogle Scholar
  7. 7.
    Mitelman F. Catalog of chromosome aberrations in cancer. 5th Edition. 1994.Google Scholar
  8. 8.
    Brodeur GM, Sekhon GS, Goldstein MN. Chromosomal aberrations in human neuroblastomas. Cancer 40, 2256–2263. 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Dracopoli NC, Harnett P, Bale SJ, Stanger BZ, Tucker MA, Housman DE, et al. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression. Proc.Natl.Acad.Sci.U.S.A. 1989; 86: 4614–4618.PubMedCrossRefGoogle Scholar
  10. 10.
    Mathew CG, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffreys AJ, et al. Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 1987; 328: 524–526.PubMedCrossRefGoogle Scholar
  11. 11.
    Moley JF, Brother MB, Fong CT, White PS, Baylin SB, Nelkin B, et al. Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res. 1992; 52: 770–774.PubMedGoogle Scholar
  12. 12.
    Harnett PR, Kearsley JH, Hayward NK, Dracopoli NC, Kefford RF. Loss of allelic heterozygosity on distal chromosome lp in Merkel cell carcinoma. A marker of neural crest origins? Cancer Genet. Cytogenet. 1991; 54: 109–113.PubMedCrossRefGoogle Scholar
  13. 13.
    Devilee P, van Vliet M, Bardoel A, Kievits T, Kuipers DN, Pearson PL, et al. Frequent somatic imbalance of marker alleles for chromosome 1 in human primary breast carcinoma. Cancer Res. 1991; 51: 1020–1025.PubMedGoogle Scholar
  14. 14.
    Leister I, Weith A, Bruderlein S, Cziepluch C, Kangwanpong D, Schlag P, et al. Human colorectal cancer: high frequency of deletions at chromosome 1p35. Cancer Res. 1990; 50: 7232–7235.PubMedGoogle Scholar
  15. 15.
    Stock C, Ambros IM, Lion T, Haas OA, Zoubek A, Gadner H, Ambros PF. Detection of numerical and structural chromosome abnormalities in pediatric germ cell tumors by means of interphase cyto-genetics. Genes, Chromosomes and Cancer 1994; 11: 40–50.CrossRefGoogle Scholar
  16. 16.
    Aurias A, Rimbaut C, Buffe D, Dubousset J, Mazabraud A. Chromosomal translocations in Ewing’s sarcoma. N Engl J Med 1983; 309: 496–497.Google Scholar
  17. 17.
    Iselius L, Lindsten J, Aurias A, Fraccaro M, Bastard C, Bottelli AM, et al. The 11q;22q translocation: a collaborative study of 20 new cases and analysis of 110 families. Hum.Genet. 1983; 64: 343–355.PubMedCrossRefGoogle Scholar
  18. 18.
    Turc-Carel C, Philip I, Berger MP, Philip T, Lenoir GM. Chromosomal translocations in Ewing’s sarcoma. N Engl J Med 1983; 309: 497–498.Google Scholar
  19. 19.
    Turc CC, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C, et al. Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(ll;22)(q24;ql2). Cancer Genet.Cytogenet. 1988; 32: 229–238.CrossRefGoogle Scholar
  20. 20.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359: 162–165.PubMedCrossRefGoogle Scholar
  21. 21.
    Zucman J, Delattre O, Desmaze C, Plougastel B, Joubert I, Melot T, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(ll;22) translocation breakpoints. Genes Chromosomes Cancer 1992; 5: 271–277.PubMedCrossRefGoogle Scholar
  22. 22.
    Mugneret F, Lizard S, Aurias A, Turc CC. Chromosomes in Ewing’s sarcoma. II. Nonrandom additional changes, trisomy 8, and der(16)t(l;16). Cancer Genet.Cytogenet. 1988; 32: 239–245.PubMedCrossRefGoogle Scholar
  23. 23.
    Douglass EC, Green AA, Hayes FA, Etcubanas E, Horowitz M, Wilimas JA. Chromosome 1 abnormalities: a common feature of pediatric solid tumors. J.Natl.Cancer Inst. 1985; 75: 51–54.PubMedGoogle Scholar
  24. 24.
    Hattinger CM, Rumpler S, Ambros IM, Strehl S, Lion T, Zoubek A, et al. Demonstration of the translocation der(16)t(1;16)(q12;q11.2) in interphase nuclei of Ewing tumors. Genes Chromosomes Cancer 1996; 17: 141–150.PubMedCrossRefGoogle Scholar
  25. 25.
    Armengol G, Tarkkanen M, Virolainen M, Forus A, Valle J, Bohling T, et al. Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br. J Cancer 1997; 75: 1403–1409.PubMedCrossRefGoogle Scholar
  26. 26.
    Sainati L, Leszl A, Montaldi A, Ninfo V, Basso G. Is the deletion of the short arm of chromosome 1 a prognostic factor in pediatric peripheral primitive neuroepithelioma (PNET)? [letter]. Med.Pediatr.Oncol. 1996; 26: 143–144.PubMedCrossRefGoogle Scholar
  27. 27.
    Look AT, Hayes FA, Shuster JJ, Douglass EC, Castleberry RP, Bowman LC, et al. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a pediatric Oncology Group study. J.Clin.Oncol. 1991; 9: 581–591.PubMedGoogle Scholar
  28. 28.
    Kerbl R, Urban CE, Ladenstein R, Ambros IM, Spuller E, Mutz I, et al. Neuroblastoma screening in infants postponed after the sixth month of age: a trial to reduce “overdiagnosis” and to detect cases with “unfavorable” biologic features. Med Pediatr. Oncol. 1997; 29: 1–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 1997; 57: 524–531.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • P. F. Ambros
    • 1
    • 2
    • 3
    • 4
    • 5
  • I. M. Ambros
    • 1
    • 2
    • 3
    • 4
  • G. Amann
    • 1
    • 2
    • 3
    • 4
  • C. M. Hattinger
    • 1
    • 2
    • 3
    • 4
  • R. Ladenstein
    • 1
    • 2
    • 3
    • 4
  • R. Kerbl
    • 1
    • 2
    • 3
    • 4
  • S. Rumpler
    • 1
    • 2
    • 3
    • 4
  • A. Luegmayr
    • 1
    • 2
    • 3
    • 4
  • H. Gadner
    • 1
    • 2
    • 3
    • 4
  1. 1.CCRI, Children’s Cancer Research InstituteViennaAustria
  2. 2.Inst. f. Clinical PathologyViennaAustria
  3. 3.St. Anna KinderspitalViennaAustria
  4. 4.Univ. Children’s Hosp. GrazAustria
  5. 5.St. Anna KinderspitalViennaAustria

Personalised recommendations