Advertisement

The Symbiotic Plasmid of Rhizobium Etli

  • J. G. Dávila
  • P. Bustos
  • M. A. Cevallos
  • M. L. Girard
  • R. Palacios
  • O. Rodríguez

Abstract

Bacteria of the Rhizobiaceae family are capable of interacting with the roots of higher plants, this family includes several genera of pathogens, such as Agrobacterium spp. as well as others that can establish a nitrogen-fixing symbiosis with legumes, i.e. Rhizobium, Sinorhizobium,Bradyrhizobium, etc. Rhizobiaceae were originally classified mainly on the basis of phenotypic features such as growth properties, colony morphology and host range (Martínez et al. 1990). Genetic information in these bacteria is usually distributed among various replicons including the chromosome and several large plasmids.

Keywords

Large Plasmid Symbiotic Plasmid Multilocus Enzyme Electrophoresis Linkage Disequi Nitrogen Fixation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gepts P 1990. Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans. Econ. Bot. 44, 28.CrossRefGoogle Scholar
  2. Girard ML, Flores M, Brom S, Romero D, Palacios R, and Davila G 1991. Structural complexity of symbiotic plasmid of Rhizobium leguminosarum by. phaseoli. J. Bacterol. 173, 2411–2419.Google Scholar
  3. Jordan DC 1984. Family III. Rhizobiaceae Conn 1938, 321AL In NR Krieg and JG Holt (ed.), Bergey’s manual of systematic bacteriology. 1, 234–254. Williams & Wilkins, Baltimore.Google Scholar
  4. Martínez E, Romero D, and Palacios R 1990. The Rhizobium genome. Crit. Rev. Plant Sci. 9, 59–93.CrossRefGoogle Scholar
  5. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, and Pardo MA 1991. Rhizobium tropici a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp trees. Int. J. Syst. Bacteriol. 41, 417–426.PubMedCrossRefGoogle Scholar
  6. Milkman R and Bridges MM 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126, 505.PubMedGoogle Scholar
  7. Nelson K, Whittam TS, and Selander RK 1991. Nucleotide polymorphism and evolution in the gliceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc. Natl. Acad. Sci. USA 88, 6667.PubMedCrossRefGoogle Scholar
  8. Piñero D, Martínez E, and Selander RK 1988. Genetic Diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 54, 2825–2832.PubMedGoogle Scholar
  9. Segovia L, Young PW, and Martínez-Romero E 1993. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43, 374–377.PubMedCrossRefGoogle Scholar
  10. Souza V, Nguyen TT, Hudson RR, Piñero D, and Lenski RE 1992. Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence of sex? Proc. Natl. Acad. Sci. USA 89, 8389–8393.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • J. G. Dávila
    • 1
  • P. Bustos
    • 1
  • M. A. Cevallos
    • 1
  • M. L. Girard
    • 1
  • R. Palacios
    • 1
  • O. Rodríguez
    • 1
  1. 1.Centro de Investigación sobre Fijación de NitrógenoUNAM. ApdoCuernavaca, MorMéxico

Personalised recommendations