Control of Root Nodule Initiation in Medicago

  • A. Kondorosi
  • M. Crespi
  • C. Charon
  • C. Sousa
  • C. Johansson
  • C. Sautter
  • A. Cebolla
  • F. Roudier
  • F. Foucher
  • B. Olah
  • E. Kiss
  • H. Trinh
  • E. Kondorosi

Abstract

Root nodules, formed in Rhizobium-legumesymbiosis, provide an excellent model system to study plant developmental processes. These organs are initiated in a localized region of the root, in the emerging root hair zone, and their development is triggered by the Nod factors, under limiting supply of combined nitrogen in the soil. Nod factors induce reactivation of the cell cycle in differentiated cortical cells, leading to the formation of the nodule meristem. In Medicago, the Go arrested cells become activated by the R. meliloti Nod signals (Savouré et al., 1994; Yang et al., 1994). Later on, certain cells loose their ability to divide. These cells can be invaded by the bacteria and differentiation of both the plant cells and the bacteria begins, resulting in the formation of a highly organized nodule structure consisting of distinct zones. Nodule cells during this process enlarge and most of them undergo one or multiple rounds of endoreduplication cycles (Truchet, 1978). Thus, activation and at least partial inactivation of the cell division cycle are programmed during nodule organogenesis.

Keywords

Rhizobium Exter Oligopeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer P, Ratet P, Crespi MD, Schultze M, and Kondorosi A 1996. Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnodl2A expression patterns in alfalfa roots. Plant J. 10, 91–105.CrossRefGoogle Scholar
  2. Charon C, Johansson C, Kondorosi E, Kondorosi A, and Crespi M 1997. Enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA 94, 8901–8906.PubMedCrossRefGoogle Scholar
  3. Dahl M, Meskiene I, Bögre L, Cam Ha DT, Swoboda I, Hubmann R, Hirt H, and Heberle-Bors E 1995. The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G, phase of the cell cycle. Plant Cell 7, 1847–1857.PubMedGoogle Scholar
  4. Gao CY and Zelenka PS 1997. Cyclins, cyclin-dependent kinases and differentiation. BioEssays 19, 307–315.PubMedCrossRefGoogle Scholar
  5. Hirt H, Mink M, Pfosser M, Bögre L, Györgyey J, Jonak C, Gartner A, Dudits D and Heberle-Bors E 1992. Alfalfa cyclins: Differential expression during the cell cycle and in plant organs. Plant Cell 4, 1531–1538.PubMedGoogle Scholar
  6. Magyar Z, Mészáros T, Miskolczi P, Deák M, Fehér A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bilgin M, Bakö L, Koncz C, and Dudits D 1997. Cell cycle phase specificity of novel cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9, 223–235.PubMedGoogle Scholar
  7. Meskiene I, Bögre L, Dahl M, Pirck M, Cam Ha DT, Swoboda I, Heberle-Bors E, Ammerer G, and Hirt H 1995. cycMs3, a novel B-type alfalfa cyclin gene, is induced in the Go-to-G1 transition of the cell cycle. Plant Cell 7, 759–771.PubMedGoogle Scholar
  8. Savouré A, Magyar Z, Pierre M, Brown S, Schultze M, Dudits D, Kondorosi A, and Kondorosi E 1994. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J. 13, 1093–1102.PubMedGoogle Scholar
  9. Savouré A, Fehér A, Kalö P, Petrovics G, Csanádi G, Szécsi J, Kiss G, Brown S, Kondorosi A, and Kondorosi E. 1995. Isolation of a full length mitotic cyclin cDNA clone CycIIIMs from Medicago sativa: chromosomal mapping and expression. Plant Mol. Biol. 27, 1059–1070Google Scholar
  10. Truchet G 1978. Sur l’état diploïd des cellules du méristem des nodules radiculaires des Légumineuses. Ann. des Sciences Naturelles, Botanique, 12 Série, Tome 19, pp. 3–38.Google Scholar
  11. van de Sande K, Pawlowski K, Czaja I, Wieneke U, Schell J, Schmidt J, Walden R, Matvienko M, Wellink J, van Kammen A, Franssen H, and Bisseling T 1996. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 273, 370–373.PubMedCrossRefGoogle Scholar
  12. Yang W-C, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H, and Bisseling T 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6, 1415–1426.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • A. Kondorosi
    • 1
    • 2
  • M. Crespi
    • 1
  • C. Charon
    • 1
  • C. Sousa
    • 1
  • C. Johansson
    • 1
  • C. Sautter
    • 3
  • A. Cebolla
    • 1
  • F. Roudier
    • 1
  • F. Foucher
    • 1
  • B. Olah
    • 1
    • 2
  • E. Kiss
    • 1
    • 2
  • H. Trinh
    • 1
  • E. Kondorosi
    • 1
  1. 1.Institut des Sciences VégétalesCNRSFrance
  2. 2.Institute of GeneticsBiological Research Center of Hungarian Academy of SciencesSzegedHungary
  3. 3.Institut für PflanzenwissenschaftenZürichSwitzerland

Personalised recommendations