Skip to main content

Abstract

Fatty acid primary amides are potent, bioactive molecules. Oleamide induces physiological sleep1,2, potentiates the action of 5-hydroxytryptamine on rat brain 5-HT2A and 5-HT2C receptors3, and blocks gap junction communication in glial cells4. Erucamide stimulates angiogenesis5, arachidonamide is a tight-binding inhibitor of human synovial phospholipase A2 6, and valpromide (n-propylpentanamide) is used clinically as an antiepileptic7. These studies indicate that the fatty acid primary amides are an exciting new class of mammalian, bioactive lipid. The biosynthetic pathway leading to the formation of the fatty acid primary amides is not understood and is information critical to the understanding and control of diseases related to their production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.A. Lerner, G. Siuzdak, O. Prospero-Garcia, S.J. Hendriksen, D.L. Boger, and B.F. Cravatt, Cerebrodiene: a brain lipid isolated from sleep-deprived cats, Proc. Natl. Acad. Sei USA 91:9505 (1994).

    Article  CAS  Google Scholar 

  2. B.F. Cravatt, O. Prospero-Garcia, G. Siuzdak, N.B. Gilula, S.J. Henriksen, D.L. Boger, and R.A. Lerner, Chemical characterization of a family of brain lipids that induce sleep, Science 268:1506 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. J.F. Hiudobro-Toro and R.A. Harris, Brain lipids that induce sleep are novel modulators of 5-hydroxytryptamine receptors, Proc. Natl. Acad. Sci. USA 93: 8078 (1996).

    Article  Google Scholar 

  4. X. Guan, B.F. Cravatt, G.R. Ehring, J.E. Hall, D.L. Boger, R.A. Lerner, and N.B. Gilula, The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial ells, J. Cell Biol. 139:1785 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. K. Wakamatsu, T. Masaki, F. Itoh, K. Kondo, and K. Sudo, Isolation of fatty acid amide as an angiogenic principle from bovine mesentery, Biochem. Biophys. Res. Commun. 168:423 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. M.K. Jain, F. Ghomashchi, B.-Z. Yu, T. Bayburt, D. Murphy, D. Houck, J. Brownell, J.C. Reid, J.E. Solowiej, S.-M. Wong, U. Mocek, R. Jarrell, M. Sasser, and M.H. Gelb, Fatty acid amides: scooting mode-based discovery of tight-binding inhibitors of secreted phospholipase A2, J. Med. Chem. 35:3584 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. M. Bialer, Clinical pharmacology of valpromide, Clin. Pharmacokin. 20:114 (1991).

    Article  CAS  Google Scholar 

  8. R.E. Mains, B.A. Eipper, C.C. Glembotski, and R.M. Dores, Strategies for the biosynthesis of bioactive peptides, Trends Neurosci. 6:229 (1983).

    Article  CAS  Google Scholar 

  9. S.P. Smeekens, S.J. Chan, and D.F. Steiner, The biosynthesis and processing of neuroendocrine peptides, Prog. Brain Res. 92:235 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. A.F. Bradbury, M.D.A. Finnie, and D.G. Smyth, Mechanism of C-terminal amide formation by pituitary enzymes, Nature 298:686 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. B.A. Eipper, R.E. Mains, and C.C. Glembotski, Identification in pituitary tissue of a peptide α-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid, Proc. Natl. Acad. Sci. USA 80:5144 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. D.J. Merkler, K.A. Merkler, W. Stern, and F.F. Fleming, Fatty acid amide biosynthesis: a possible new role for peptidylglycine α-amidating enzyme and acyl-coenzyme A:glycine N-acyltransferase, Arch. Biochem. Biophys. 330:430 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. D. Schachter, and J.V. Taggart, Glycine N-acylase: purification and properities, J. Biol. Chem. 208:263 (1954).

    PubMed  CAS  Google Scholar 

  14. N. Gregersen, S. KØlvraa, and P.B. Mortensen, Acyl-CoA:glycine N-acyltransferase: in vitro studies on the glycine conjugations of straight-and branched-chain acyl-CoA esters in human liver, Biochem. Med. Metabol. Biol. 35:210 (1986).

    Article  CAS  Google Scholar 

  15. K. Asaoka, Enzymes that metabolize acyl-coenzyme A in the monkey — their distribution, properties, and roles in an alternative pathway for the excretion of nitrogen, Int. J. Biochem. 23:429 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. G.S. Wand, R.L. Ney, S. Baylin, B. Eipper, and R.E. Mains, Characterization of a peptide α-amidation activity in human plasma and tissues, Metabolism 34:1044 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. C. de Sousa, R.A. Chalmers, T.E. Stacey, B.M. Tracey, C.M. Weaver, and D. Bradley, The response to L-carnitine and glycine therapy in isovaleric acidaemia, Eur. J. Pediatr. 144:451 (1986).

    Article  PubMed  Google Scholar 

  18. Z. Gregus, T. Fekete, F. Varga, and C.D. Klaassen, Availability of glycine and coenzyme A limits glycine conjugation in vivo, Drug Metab. Dispos. 20:234 (1992).

    PubMed  CAS  Google Scholar 

  19. A.H. Bertelsen, G.A. Beaudry, E.A. Galella, B.N. Jones, M.L. Ray, and N.M. Mehta, Cloning and characterization of two alternatively spliced rat α-amidating cDNAs from rat medullary thyroid carcinoma, Arch. Biochem. Biophys. 279:87 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. D.A. Miller, K.U. Sayad, R. Kulathila, G.A. Beaudry, DJ. Merkler, and A.H. Bertelsen, Characterization of a bifunctional peptidylglycine α-amidating enzyme expressed in Chinese hamster ovary cells, Arch. Biochem. Biophys. 298:380 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. B.N. Jones, P.P. Tamburini, A.P. Consalvo, S.D. Young, S.J. Lovato, J.P. Gilligan, A.Y. Jeng, and L.P. Wennogle, A fluorometric assay for peptidyl α-amidation activity using high-performance liquid chromatography, Anal. Biochem. 168:272 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. A.G. Katopodis, and S.W. May, Novel substrates and inhibitors of peptidylglycine α-amidating monooxygenase, Biochemistry 29:4541 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. S.D. Young and P.P. Tamburini, Enzymatic peptidyl α-amidation proceeds through formation of an α-hydroxyglycine intermediate, J. Am. Chem. Soc. 111:1933 (1989).

    Article  CAS  Google Scholar 

  24. A.G. Katopodis, D. Ping, and S.W. May, A novel enzyme from bovine neurointermediate pituitary catalyzes dealkylation of α-hydroxyglycine derivatives, thereby functioning sequentially with peptidylglycine α-amidating monooxygenase in peptide amidation, Biochemistry 29:6115 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. P.T. Ozand and G.G. Gascon, Organic acidurias: a review, J. Child Neurol. 6:288 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merkler, K.A. et al. (1999). A Pathway for the Biosynthesis of Fatty Acid Amides. In: Honn, K.V., Marnett, L.J., Nigam, S., Dennis, E.A. (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 4. Advances in Experimental Medicine and Biology, vol 469. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4793-8_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4793-8_76

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7171-7

  • Online ISBN: 978-1-4615-4793-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics