Toxicity of Linoleic Acid Metabolites

  • Jessica F. Greene
  • Bruce D. Hammock
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 469)


Leukotoxin, cis-9,10-epoxyoctadeca-12(Z)-enoic acid (LTX), and isoleukotoxin, cis -12,13-epoxyoctadeca-9(Z)-enoic acid (iLTX), are the monoepoxides of linoleic acid (cis-9,12-octadecadienoic acid). In the systems so far examined two primary metabolites are LTX diol, threo-9,10-dihydroxy-octadeca-12(Z)-enoic acid, and iLTX diol, threo-12,13-dihydroxyoctadeca-9 (Z)-enoic acid. See figure 1. The first mention of LTX, per se, in the literature was in 1986 (1), but the two isomers of epoxyoctadecenoic acid have been discussed since before dy1971. LTX and iLTX are found endogenously in both animals and plants. While their defensive role in plants seems fairly well established (2), their role in animals is less clear. What is clear is that LTX and iLTX are formed from linoleic acid, usually when the organism is under less than optimal conditions, and that they have a wide range of effects.


Linoleic Acid Adult Respiratory Distress Syndrome Epoxide Hydrolase Enoic Acid Soluble Epoxide Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ozawa, et al., Biochem Biophys Res Com 134, 1071–1078 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Kato, et al, TetLett 24, 4715–4718 (1983).Google Scholar
  3. 3.
    S. M. Mumby, et al., Pest Biochem. Phys. 11, 275–284 (1979).CrossRefGoogle Scholar
  4. 4.
    B. Borhan, et al., Anal Biochem (1996).Google Scholar
  5. 5.
    M. F. Moghaddam et al. Nat Med 3 562–566 1997PubMedCrossRefGoogle Scholar
  6. 6.
    T. Ishizaki, et al., Nat. Med. 3, 592 (1997).Google Scholar
  7. 7.
    B. D. Hammock, Nat. Med. 3, 592 (1997).CrossRefGoogle Scholar
  8. 8.
    A. Stephen & N. Wald, Am J Clin Nut 52, 457–469 (1990).Google Scholar
  9. 9.
    B. D. Hammock, et al, Tox. Appl. Pharm. 71, 254–265 (1983).CrossRefGoogle Scholar
  10. 10.
    G. Gibson, et al, Biochem. Soc. Trans. 18, 97–99 (1990).PubMedGoogle Scholar
  11. 11.
    M. Hayakawa, et al., Biochem Biophys Res Com 137, 424–430 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Iwase, et al, Biochem Biophys Res Com 216, 483–8 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Fukushima, et al., Cardio Res 22, 213–218 (1988).CrossRefGoogle Scholar
  14. 14.
    T. Ishizaki, et al., Biochem Biophys Res Com 210, 133–7 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Ishizaki, et al., Am J Physiol 269, L65–70 (1995).PubMedGoogle Scholar
  16. 16.
    T. Ishizaki, et al., Am J Physiol 268, L123–8 (1995).PubMedGoogle Scholar
  17. 17.
    H. Jia-Ning, et al., Lung 166, 327–337 (1988).CrossRefGoogle Scholar
  18. 18.
    M. Hayakwa, et al., Biochem Int 21, 573–579 (1990).Google Scholar
  19. 19.
    T. Ozawa, et al., Adv Prost Throm Leuk Res 21, 569–572 (1990).Google Scholar
  20. 20.
    K. Kosaka, et al., Mol Cell Biochem 139, 141–8 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    J. H. Moran, et al., Toxicol Appl. Pharmacol 146, 53–59 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    E. R. Pacht, et al., Chest 100, 1397–1403 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jessica F. Greene
    • 1
  • Bruce D. Hammock
    • 1
  1. 1.Departments of Entomology and Environmental ToxicologyUniversity of California at DavisDavisUSA

Personalised recommendations