Lipid Mediators Stimulate Reactive Oxygen Species Formation in Immortalized Human Keratinocytes

  • Rachel Goldman
  • Sandra Moshonov
  • Uriel Zor
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 469)


Cell signaling is accompanied by rapid remodeling of membrane lipids by activated phospholipases (PLA2, PLC, PLD and sphingomyelinase) with the generation of bioactive lipids that can serve as intra- and/or extracellular mediators (Serhan, et al., 1996). These lipid mediators include eicosanoids, platelet activating factor (PAF), diacyl glycerides, lyso-phosphatidylcholine (LPC), phosphatidic acid (PA), lyso-PA, ceramide and other newly-discovered autacoids. They are important in a wide range of cell-cell communication processes, such as host defense, inflammation, ischemia reperfusion and homeostasis.


Phosphatidic Acid Phosphatidic Acid HaCaT Cell Reactive Oxygen Species Formation Lipid Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Serhan, C. N., J. Z. Haeggstrom, and C. C. Leslie. 1996. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB-J 10:1147–58.PubMedGoogle Scholar
  2. 2.
    Travers, J. B., J. C. Huff, M. Rola-Pleszczynski, E. W. Gelfand, J. G. Morelli, and R. C. Murphy. 1995. Identification of functional platelet-activating factor receptors on human keratinocytes. J Invest Dermatol 105:816–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogita, T., Y. Tanaka, T. Nakaoka, R. Matsuoka, Y. Kira, M. Nakamura, T. Shimizu, and T. Fujita. 1997. Lysophosphatidylcholine transduces Ca2+ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol 272:H17–24.PubMedGoogle Scholar
  4. 4.
    Dreher, D., and A. F. Junod. 1996. Role of oxygen free radicals in cancer development. Eur J Cancer 32a:30–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Ames, B. N., M. K. Shigenaga, and T. M. Hagen. 1995. Mitochondrial decay in aging. Biochim-Biophys-Acta 1271:165–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Bae, Y. S., S. W. Kang, M. S. Seo, I. C. Baines, E. Tekle, P. B. Chock, and S. G. Rhee. 1997. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221.PubMedCrossRefGoogle Scholar
  7. 7.
    Ohba, M, M. Shibanuma, T. Kuroki, and K. Nose. 1994. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J-Cell-Biol 126:1079–88 PubMedCrossRefGoogle Scholar
  8. 8.
    Morre, D. J., and A. O. Brightman. 1991. NADH oxidase of plasma membranes. J Bioenerg Biomembr 23:469–89.PubMedCrossRefGoogle Scholar
  9. 9.
    Krieger Brauer, H. I., and H. Kather. 1995. The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem-J 307:543–84 PubMedGoogle Scholar
  10. 10.
    Goldman, R., S. Moshonov, and U. Zor. 1998. Stimulation of reactive oxygen species formation in a human keratinocyte cell line: role of calcium. Arch. Biochem. Biophys. 350:10–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Sen, C. K., and L. Packer. 1996. Antioxidant and redox regulation of gene transcription. FASEB-J 10:709–20.PubMedGoogle Scholar
  12. 12.
    Stevenson, M. A., S. S. Pollock, C. N. Coleman, and S. K. Calderwood. 1994. X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res 54:12–5.PubMedGoogle Scholar
  13. 13.
    Suzuki, Y. J., H. J. Forman, and A. Sevanian. 1997. Oxidants as stimulators of signal transduction. Free Radical Biology &Medicine 22:269–285.CrossRefGoogle Scholar
  14. 14.
    Henderson, L. M., and J. B. Chappel. 1996. NADPH oxidase of neutrophils. Biochim Biophys Acta 1273:87–107.PubMedCrossRefGoogle Scholar
  15. 15.
    Boukamp, P., R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig. 1988. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol 106:761–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Faulkner, K., and I. Fridovich. 1993. Luminol and lucigenin as detectors for O2.-. Free-Radic-Biol-Med 15:447–51 i PubMedCrossRefGoogle Scholar
  17. 17.
    Stuehr, D. J., O. A. Fasehun, N. S. Kwon, S. S. Gross, J. A. Gonzalez, R. Levi, and C. F. Nathan. 1991. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. Faseb J 5:98–103.PubMedGoogle Scholar
  18. 18.
    Radi, R., T. P. Cosgrove, J. S. Beckman, and B. A. Freeman. 1993. Peroxynitrite-induced luminol chemiluminescence. Biochem-J 290:51–7.PubMedGoogle Scholar
  19. 19.
    Garcia Ruiz, C., A. Colell, M. Mari, A. Morales, and J. C. Fernandez Checa. 1997. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J-Biol-Chem 272:11369–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Quillet Mary, A., J. P. Jaffrezou, V. Mansat, C. Bordier, J. Naval, and G. Laurent. 1997. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J-Biol-Chem 272:21388–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Rachel Goldman
    • 1
  • Sandra Moshonov
    • 1
  • Uriel Zor
    • 1
  1. 1.Department of Biological ChemistryThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations