Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 469))

Abstract

The cysteinyl leukotrienes are powerful mediators of vaso- and bronchoconstriction, edema formation, and mucus secretion1. They appear to play a key role in asthma and may be involved in cardiac and renal disease as well1–8. The parent compound, leukotriene C4 (LTC4), is formed by the conjugation of leukotriene A4 with glutathione (GSH). Thus it may be expected that the metabolism of LTC4 resembles GSH conjugates formed with carcinogens, toxins, and xenobiotics9. Until recently, the only enzyme known to metabolize this class of compounds as well as GSH itself was γ-glutamyl transpeptidase (GGT)10–12. GSH conjugates including LTC4 are metabolized to their cysteinylglycine derivatives. In the case of LTC4 the resulting leukotriene is LTD4. This compound is the most potent of the cysteinyl leukotrienes and has been found to be a consistently more effective agonist than LTC4 and 10 to 100 times more effective than LTE4, a metabolite of LTD4 13–16. LTC4 is synthesized in the liver and is secreted into the bile15. It is also produced in peripheral tissues1,2,16. Conversion of LTC4 to LTD4 is not well understood although it is believed to occur extracellularly because GGT is an ectoenzyme10–17. We became interested in cysteinyl leukotriene metabolism when we developed mice deficient in GGT18. Our subsequent studies unexpectedly showed that GGT-deficient mice are competent to metabolize LTC4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refferences

  1. W.R. Henderson, Jr., The role of leukotrienes in inflammation, Annul. Intern. Med.121:684 (1994).

    CAS  Google Scholar 

  2. J.M. Drazen, J.P. Arm, and K.F. Austen, Sorting out the cytokines of asthma, J. Exp. Med.183:1 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. F. Michelassi, L. Landa, R.D. Hill, E. Lowenstein, W.D. Watking, A.J. Petkau, et al., Leukotriene D4: a potent coronary artery vasoconstrictor associated with impaired ventricular contraction, Science217:841 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. K.F. Badr, C. Baylis, J.M. Pfeffer, M.A. Pfeffer, R.J. Soberman, R.A. Lewis, et al., Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat, Circ. Res.54:492 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. C.C. Lee, R.F. Appleyard, J.G. Byrne, and L.H. Cohn, Leukotrienes D4 and E4 produced in myocardium impair coronary flow and ventricular function after two hours of global ischaemia in rat heart, Cardiovasc. Res.27:770 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. T. Katoh, E.A. Lianos, M. Fukunaga, K. Takahashi, and K.F. Badr, Leukotriene D4 is a mediator of proteinuria an glomerular hemogynamic abnormalities in passive heymann nephritis, J. Clin. Investig.91:1507 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. R. Petric and A.W. Ford-Hutchinson, Elevated cysteinyl leukotriene excretion in experimental glomerulonephritis, Kidney International46:1322 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. W.R. Henderson, Jr., Role of leukotrienes in asthma, Ann. of Allergy72:272 (1994).

    Google Scholar 

  9. A. Parkinson, Biotransformation of xenobiotics, in: Casarett and Doull’s Toxicology, The Basic Science of PoisonC.D. Klaassen, ed., McGraw-Hill, New York (1996).

    Google Scholar 

  10. A. Meister, and A. Larsson, Glutathione synthetase deficiency and other disorders of the γ-glutamyl cycle, in: The Metabolic Basis of Inherited Disease,6th ed., C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York (1989).

    Google Scholar 

  11. N. Heisterkamp, E. Rajpert-De Meyts, L. Uribe, H.J. Forman, and J. Groffen, Identification of a human γ-glutamyl cleaving enzyme related to, but distinct from γ-glutamyl transpeptidase, Proc. Natl. Acad. Sci. USA88:6303 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. B.Z. Carter, A.L. Wiseman, R. Orkiszewski, K.D. Ballard, C-N. Ou, and M.W. Lieberman, Metabolism of leukotriene C4 in γ-glutamyl transpeptidase-deficient mice, J. Biol. Chem. 272:12305 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. J.P. Arm, and H.L. Tak, Sulphidopeptide leukotrienes in asthma, Clin. Sci.84:501 (1993).

    PubMed  CAS  Google Scholar 

  14. M.N. Samhoun, R.M. Conroy, and P.J. Piper, Pharmacological profile of leukotriene E4, N-acetyl E4 and four of the novel ω and β oxidative metabolites in airways of guinea pig and man in vitro, Br. J. Pharmacol. 98:1406 (198

    Google Scholar 

  15. D. Keppler, Leukotrienes: biosynthesis, transport, inactivation, and analysis, Rev. Physiol. Biochem. Pharmacol.121:2(1992).

    Google Scholar 

  16. W.R. Henderson, Jr., D.B. Lewis, R.K. Albert, Y. Zhang, W.J.E. Lamm, G.K.S. Chiang, F. Jones, P. Eriksen, Y T. Tien, M. Jonas, and E.Y. Chi, The importance of leukotrienes in airway inflammation in a mouse model of asthma, J. Exp. Med. 184:1483 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. M.W. Lieberman, R. Barrios, B.Z. Carter, G. Habib, R.M. Lebovitz, S. Rajagopalan, A. Sepulveda, Z.Z. Shi, and D.F. Wan, γGlutamyl transpeptidase: What does the organization and expression of a multipromoter gene tell u about its functions?, Am. J. Pathol.147:1175 (1995).

    PubMed  CAS  Google Scholar 

  18. M.W. Lieberman, A.L. Wiseman, Z.Z. Shi, B.Z. Carter, R. Barrios, C.N. Ou, P. Chévez-Barrios, Y. Wang, G.M Habib, J.C Goodman, S.L. Huang, R.M. Lebovitz, M.M. Matzuk, Growth retardation and cysteine deficiency i γ-glutamyl transpeptidase-deficient mice, Proc. Natl. Acad. Sci. USA93:7923 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. G.M. Habib, R. Barrios, Z.Z. Shi, and M.W. Lieberman, Four distinct membrane bound dipeptidase RNAs are differentially expressed in the mouse, J. Biol. Chem. 271:16273 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. A.M. Goffinet, and A. Nugyen, Brain leukotriene C4 binding sites are S-alkylglutathione binding sites, Eur. J. Pharmacol.161:99(1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lieberman, M.W., Shields, J.E., Will, Y., Reed, D.J., Carter, B.Z. (1999). γ-Glutamyl Leukotrienase Cleavage of Leukotriene C4 . In: Honn, K.V., Marnett, L.J., Nigam, S., Dennis, E.A. (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 4. Advances in Experimental Medicine and Biology, vol 469. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4793-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4793-8_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7171-7

  • Online ISBN: 978-1-4615-4793-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics