Local Anesthetic Effects on TXA2 Receptor Mediated Platelet Aggregation Using Quenched Flow Aggregometry

  • Christian W. Honemann
  • Bernard Lo
  • Jo S. Erera
  • Renate Polanowska-Grabowska
  • Adrean R. L. Gear
  • Marcel Durieux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 469)


Thrombembolic complications are common during and after surgery, and appear to result from hyper-coagulation and hypo-perfusion (the latter often induced by vasoconstriction). After major orthopedic or urologic surgery, deep venous thrombosis is reported to occur in 30 – 80% of patients.1,2 Similarly, myocardial ischemia1, induced by microthombosis and/or coronary vasoconstriction, is frequent.3,4 The mechanisms for this response are poorly understood, but inflammatory mediators — released in response to surgical trauma and inducing thrombosis and vasoconstriction — are likely to be pivotal.


Platelet Aggregation Local Anesthetic K562 Cell Deep Venous Thrombosis Induce Platelet Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooke, E.D., Lloyd, M.J., Bowcock, S.A., Pilla, M.A.: Intravenous lignocaine in prevention of deep venous thrombosis after elective hip surgery. Lancet 8042:797–799, 1997.Google Scholar
  2. 2.
    Bradley, J.G., Krugener, G.H., Jager, H.J.: The effectiveness of intermittent plantar venous compression in prevention of deep venous thrombosis after total hip arthroplasty. J. Arthroplasty 8:57–61, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Landesberg, G., Einav, S., Christopherson, R., Beattie, C., Berlatzky, Y., Rosenfeld, B., Eidelman, L.A., Norris, E., Anner, H., Mosseri, M., Cotev, S., and Luria, M.H.: Perioperative ischemia and cardiac complications in major vascular surgery: importance of the preoperative twelve-lead electrocardiogram, j. Vasc Surg 26:570–578, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    Spiess, B.D. Ischemia-a coagulation problem. J. Cardiovasc. Pharmacol. 27:S38–41, 1996.CrossRefGoogle Scholar
  5. 5.
    Modig, J. The role of lumbar epidural anesthesia as anthithrombotic prophylaxis in total hip replacement. Acta Chir. Scand. 151:589–594, 1984.Google Scholar
  6. 6.
    deLeon-Casasola, O.A., Lema, M.J., Karabella, D., and Harrison, P. Postoperative myocardial ischemia: Epidermal versus intravenous patient-controlled analgesia. A pilot project. Reg. Anesth. 20:105–112, 1995.Google Scholar
  7. 7.
    Borg, T., Modig, J. Potential anti-thrombotic effects of local anesthetics due to their inhibition of platelet aggregation. Acta Anaesth. Scand. 29:739–742, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Odoom, J.A., Dokter, P.W., Sturk, A., Ten, C.W., Sih, I.L. Bovill, J.G. The influence of epidural analgesia on platelet function and correlation with plasma bupivacaine concentrations. Eur. J. Anaesthesiol. 5:305–312, 1988.PubMedGoogle Scholar
  9. 9.
    Henny, C.P., Odoom, J.A., Ten, C.H., Oosterhoff, R.J., Dabhoiwala, N.F., Sih, I.I. Effect of extradural bupivacaine on the haemostatic system. Br. J. Anaesth. 58:301–305, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Vesterqvist, O., Schott, U., Berseus, O., Axelsson, K., and Green, K. In vivo production of thromboxane and prostacyclin in patients following total hip arthroplasty. Scand. J. Clin. Lab. Invest. 48:233–239, 1987.CrossRefGoogle Scholar
  11. 11.
    Teoh, K.H., Fremes, S.E., Weisel, R.D., Christakis, G.T., Teasdale, S.J., Madonik, M.M., Ivanov, J., Mee, A.V., and Wong, P.Y. Cardiac release of prostacyclin and thromboxane A2 during coronary revascularization. J. Thorac. Cardiovasc. Surgery 93:120–126, 1987.Google Scholar
  12. 12.
    Faymonville, M.E., Deby-Dupont, G., Larbuisson, R., Deby, C, Bodson, L., Limet, R., and Lamy, M. Prostaglandin E2, prostacyclin, and thromboxane changes during nonpulsatile cardiopulmonary bypass in humans. J. Thorac. Cardiovasc. Surg. 92:858–866, 1986.Google Scholar
  13. 13.
    Schilling, M.K. Gassmann, N., Sigurdsson, G.H., Regli, B., Stoupis, C. Furrer, M., Signer, C, Redaelli, C, Buechler, M.W. Role of thromboxane and leukotriene B4 in patients with acute respiratory distress syndrome after oesophagectomy. Brit. J. /Anaesth. 80:36–40, 1998.CrossRefGoogle Scholar
  14. 14.
    Barry, M.C., Kelly, C., Burke, P., Sheehan, S., Redmond, H.P. and Bouchbier-Hayes, D. Immunological and physiological responses to aortic surgery: Effect of reperfusion on neutrophil and monocyte activation and pulmonary function. Br. J. Surgery 84:513–519, 1997.CrossRefGoogle Scholar
  15. 15.
    Ylikorkala, O., and Makila, U.M. Prostacyclin and thromboxane in gynecology and obstetrics. Am. J. Obstet. Gynecol. 152:318–329, 1985.PubMedGoogle Scholar
  16. 16.
    Ito, B.R., Roth, D.M. and Engler, R.L. Thromboxane A2 and peptidoleukotrienes contribute to the myocardial ischemia and contractile dysfunction in response to intracoronary infusion of complement C5a in pigs. Circ. Res. 66:596–607, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Montalescot, G. Drobinski, G., Maclouf, J., Lellouche, F., Ankri, A., Moussallem, N. Eugene, L., Thomas, D. and Grosgogeat, Y. Early thromboxane release during pacing-induced myocardial ischemia with angiographically normal coronary arteries. Am. Heart J. 120:1445–1447, 1990.PubMedCrossRefGoogle Scholar
  18. 18.
    Packham, M.A. Role of platelets in thrombosis and hemostasis. [Review] [56 refs]. Can. J. Physiol. Pharmacol. 72:278–284, 1994.CrossRefGoogle Scholar
  19. 19.
    Gear, A.R. Rapid reactions of platelets studied by a quenched-flow approach: Aggregation kinetics. J. Lab. Clin. Med. 100:866–886, 1982.PubMedGoogle Scholar
  20. 20.
    Carty, D.J., Jones, G.D., Freas, D.L., Gear, A.R. Effect of epinephrine on rapid ADP-induced aggregation, protein phosphorylation, and cytoplasmic calcium dynamics of platelets: A quenched-flow study. J. Lab. Clin. Med. 112:603–611, 1988.PubMedGoogle Scholar
  21. 21.
    Jones, G.D., Gear, A.R. Subsecond calcium dynamics in ADP-and thrombin-stimulated platelets: A continuous-flow approach using indo-1. Blood 71:1539–1543, 1988.PubMedGoogle Scholar
  22. 22.
    Packham, M.A., Kinlough-Rathbone, R.L., Mustard, J.F. Thromboxane A2 causes feedback amplification involving extensive thromboxane A2 formation on close contact of human platelets in media with low concentration of ionized calcium. Blood 70:647–651, 1987.PubMedGoogle Scholar
  23. 23.
    Juergens, R., Braunsteiner, H. Zur pathogenese der thrombose. Schweiz Med Wochenschr 80:1388–1395, 1950.Google Scholar
  24. 24.
    O’Brien, J.R. Some results from a new method of study. J. Clin. Pathol. 15:452–455, 1962.CrossRefGoogle Scholar
  25. 25.
    Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–930, 1962.PubMedCrossRefGoogle Scholar
  26. 26.
    Hornstra, G., Ten Hoor, F. the filtagrometer. Thromb. Diath. Haemorrh. 34:924–928, 1975.Google Scholar
  27. 27.
    Wu, K.K., Hoak, J.C. A new method for the quantitative detection of platelet aggregates in patients with arterial insufficiency. Lancet 7886:924–929, 1974.CrossRefGoogle Scholar
  28. 28.
    Hirakata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., Narumiya, S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349:617–620, 1991.CrossRefGoogle Scholar
  29. 29.
    Nuesing, R.M., Hirata, M, Kakizuka, A., Eki, T., Ozawa, K. Narumiya, S. Characterization and chromosomal mapping of the human thromboxane A2 receptor gene. J. Biol. Chem. 268:25253–25259, 1993.Google Scholar
  30. 30.
    Blaise, G.,A., Parent, M., Laurin, S., Omri, A., Reader, T.A., Moutqin, J.M. Platelet-induced vasomotion of isolated canine coronary artery in the presence of halothane or isoflurane. J. Cardiothorac. Vasc. Anesth. 8:175–181, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto, Y., Kamiya, K., Terao, S. Modeling of human thromboxane A2 receptor and analysis of the receptor-ligand interaction. J. Med. Chem. 36:820–825, 1993.PubMedCrossRefGoogle Scholar
  32. 32.
    Keith, J., Spitz, B., Van Asche, F.A. Thromboxane synthetase inhibition as a new therapy for preeclampsia: Animal and human studies minireview. Prostaglandins 45:3–13, 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Kurosawa, M. Role of thromboxane A2 synthetase inhibitors in the treatment of patients with bronchial asthma. Clinical Therapeutics 17:2–11, 1995.PubMedCrossRefGoogle Scholar
  34. 34.
    Schroer, K. The effect of prostaglandins and thromboxane A2 on coronary vessel tone — mechanisms of action and therapeutic implications. European Heart Journal 14:34–41, 1993.Google Scholar
  35. 35.
    Cooke, E.D., Lloyd, M.J., Bowcock, S.A., Pilla, M.A. Intravenous lignocaine in prevention of deep venous thrombosis after elective hip surgery. Lancet 8042:797–799, 1977.CrossRefGoogle Scholar
  36. 36.
    Bort, T., Modig, J. Potential anti-thrombotic effects of local anaesthetics due to their inhibition of platelet aggregation. Acta Anaesthesiol. Scanda. 29:739–742, 1985.CrossRefGoogle Scholar
  37. 37.
    Modig, J. Influence of regional anesthesia, local anesthetics, and sympathicomimetics on the pathophysiology of deep vein thrombosis. Acta Chir. Scand. Suppl. 550:119–124; discussion 124-127, 1989.PubMedGoogle Scholar
  38. 38.
    Modig, J. The role of lumbar epidural anaesthesia as anithrombotic prophylaxis in total hip replacement. Acta Chir. Scand. 151:589–594, 1985PubMedGoogle Scholar
  39. 39.
    Henny, C.P., Odoom, J.A., TenCate, J.W., TenCate, R.J.F., Osterhoff, N.F., Dabhoiwala, N.F., and Sih, I.L. Effects of extradural bupivacaine on the hemostatic system. Br. J. Anaesth. 58:301–305, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    Masterson, G.R. and Hunter, J.M. Does anaesthesis have long-term consequences? British Journal of Anaesthesia 77(11): 569–571, 1985.Google Scholar
  41. 41.
    Beattie, W.S., Warriner, C.B., Etches, R., Badner, N.H., Parsons, D., Buckley, N., Chan, V., Girard, M. The addition of continuous intravenous infusion of ketorolac to a patient-controlled analgetic morphine regime reduced postoperative myocardial ischemia in patients undergoing elective total hip or knee arthroplasty. Anesth. Analg. 84:715–822, 1997.PubMedGoogle Scholar
  42. 42.
    Odoom, J.A., Sturk, A., Dokter, P.W.C., Bovill, J.G., TenCate, J.W., and Osting, J. The effects of bupivacaine and pipecoloxylidide on platelet function in vitro. Acta Anaesth. Scand. 33:385–388, 1989.PubMedCrossRefGoogle Scholar
  43. 43.
    Santos, A.C., Arthur, G.R., Wlody, D., De, A.P., Morishima, H.O., Finster, M. Comparative systemic toxicity of ropivacaine and bupivacaine in nonpregnant and pregnant ewes. Anesthesiology 82: 734–740, 1995.PubMedCrossRefGoogle Scholar
  44. 44.
    Emanuelsson, B.M., Persson, J., Sandin, S., Alm, C, and Gustafsson, L.L. Intraindividual and interindividual variability in the disposition of the local anesthetic ropivacaine in healthy subjects. Ther. Drug. Monit. 19: 126–131, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    De, C.F. and Janssen, P.A. Amplification mechanisms in platelet activation and arterial thrombosis. J. Hypertens. Suppl. 8:S87–S93, 1990.Google Scholar
  46. 46.
    Hirakata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., and Narumiya, S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349: 617–620, 1991.CrossRefGoogle Scholar
  47. 47.
    Nuesing, R.M., Hirata, M., Kakizuka, A., Eki, T., Ozawa, K., and Narumiya, S. Characterization and chromosomal mapping of the human thromboxane A2 receptor gene. J. Biol. Chem. 268:25253–25259, 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Christian W. Honemann
    • 1
    • 2
  • Bernard Lo
    • 2
  • Jo S. Erera
    • 2
  • Renate Polanowska-Grabowska
    • 3
  • Adrean R. L. Gear
    • 3
  • Marcel Durieux
    • 2
  1. 1.Klinik and Poliklinik fur Anasthesiologie and Operative IntensivmedizinWestfalische Wilhelms Universitat MunsterMunsterGermany
  2. 2.Department of AnesthesiologyUniversity of Virginia Health Science CenterCharlottesvilleUSA
  3. 3.Department of BiochemistryUniversity of Virginia Health Sciences CenterCharlottesvilleUSA

Personalised recommendations