Cytokine Induced Regulation of 15-Lipoxygenase and Phospholipid Hydroperoxide Glutathione Peroxidase in Mammalian Cells

  • Kerstin Schnurr
  • Roland Brinckmann
  • Hartmut Kühn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 469)

Abstract

Lipid peroxidation has been implicated in the pathogenesis of various diseases such as cancer, atherosclerosis, and neurodegenarative disorders (Louvel et al., 1997). Under resting conditions the intracellular peroxide level of mammalian cells is rather low (Weitzel and Wendel, 1993) and this may be due to the high reducing capacity of most mammalian cells. However, during cell activation the cellular peroxide tone may be increased leading to membrane damage and even cell death. The cellular peroxide tone is a steady state concentration which depends inter alia on the expression of pro- and anti-oxidative enzymes. With respect to lipid peroxidation 15-lipoxygenases (15-LO’s) and the phospholipid hydroperoxide glutathione peroxidase (PH-GPx) constitute opposite enzymes in the cellular metabolism of hydroperoxy ester lipids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinckmann, R., M. Topp, I. Zalan, D. Heydeck, P. Ludwig, H. Kühn, W.E: Berdel, and A.J.R. Habenicht, 1996, The regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin 4. Biochem. J. 318: 305.PubMedGoogle Scholar
  2. Burk, R.F., and K.E. Hill, 1993, Regulation of selenoproteins. Annu. Rev. Nutr. 13:65.PubMedCrossRefGoogle Scholar
  3. Conrad, D.J., H. Kühn, M. Mulkins, E. Highland, and E. Sigal. 1992. Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc. Natl. Acad. Sci. USA 89:217.PubMedCrossRefGoogle Scholar
  4. Cornicelli, J.A., K. Welch, B. Auerbach, S.J. Feinmark, and A. Daugherty. 1996. Mouse peritoneal macrophages contain abundant omega-6 lipoxygenase activity that is independent of interleukin-4. Arterioscler. Thromb. Vasc. Biol. 16:1488–1494.PubMedCrossRefGoogle Scholar
  5. Erb, K.J., B. Ruger, M. von-Brevern, B. Ryffel, A. Schimpl, and K. Rivett, 1997, Constitutive expression of interleukin (IL)-4 in vivo causes autoimmune-type disorders in mice. J. Exp. Med. 185:329.PubMedCrossRefGoogle Scholar
  6. Erb, K.J., T. Holtschke, K. Muth, I. Horak, and A. Schimpl, 1994, T cell subset distribution and B cell hyperreactivity in mice expressing interleukin-4 under the control of major histocompatibility omplex class I regulatory sequences. Eur. J. Immunol. 24:1143.PubMedCrossRefGoogle Scholar
  7. Kkelavkar, U., S. Wang, A. Montero, and K.F. Badr, 1997, Identification and characterization of promoter and enhancer sequences of human 15-lipoxygenase (15-LO) gene. 5th International Conference of Eicosanoids &other bioactive Lipids in Cancer, Inflammation and releated Diseases LaJolla,CA.Google Scholar
  8. Kühn, H., 1996, Biosynthesis, metabolization and biological importance of the primary 15-lipoxygenase metabolites 15-hydro(pero)xy-5Z,8Z,11Z,13E-eicosatetraenoic acid and 13-hydro(pero)xy-9Z,11E-octadecadienoic acid. Prog. Lipid Res. 35:203.PubMedCrossRefGoogle Scholar
  9. Kuhn, R., K. Rajewsky, and W. Muller, 1991, Generation and analysis of interleukin-4 deficient mice. Science 254:707.PubMedCrossRefGoogle Scholar
  10. Levy, B.D., M. Romano, H.A. Chapman, J.J. Reilly, J. Drazen, and C.N. Serhan, 1993, Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13 trans-eicosatetraenoic acid and lipoxins. J. Clin. Invest. 92:1572.PubMedCrossRefGoogle Scholar
  11. Louvel, E., J. Hugon, and A. Doble, 1997, Therapeutic advances in amyotrophic lateral sclerosis. Trends Pharmacol. Sci. 18:196.PubMedGoogle Scholar
  12. Nassar, G.M., J.D. Morrow, L.J. Roberts II, F.G. Lakkis, and K.F. Badr, 1994, Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes. J. Biol. Chem. 269:27631.PubMedGoogle Scholar
  13. Paul, W.E., 1991, Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77:1859.PubMedGoogle Scholar
  14. Schnurr, K., Belkner, J., Ursini, F., Schewe, T., Kühn, H., 1996, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J. Biol. Chem. 271: 4653.PubMedCrossRefGoogle Scholar
  15. Sun, D., and C.D. Funk, 1996, Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J. Biol. Chem. 271:24055.PubMedCrossRefGoogle Scholar
  16. Ursini, F., M. Maiorino, R. Brigelius-Flohé, K.D. Aumann, A. Roveri, D. Schomburg, and L. Flohé, 1995, Diversity of glutathione peroxidases. Meth. Enzymol. 252:38.PubMedCrossRefGoogle Scholar
  17. Weitzel, F., and A. Wendel, 1993, Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J. Biol Chem. 268:6288.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Kerstin Schnurr
    • 1
  • Roland Brinckmann
    • 1
  • Hartmut Kühn
    • 1
  1. 1.Institute of BiochemistryUniversity Clinics Charité, Humboldt UniversityBerlinGermany

Personalised recommendations