Contribution to Guided Waves Analysis at Low Frequency in Thin Absorbing Plates with Application to the Non Destructive Testing of Paper

  • A. Bonnin
  • R. Huchon
  • M. Deschamps
Chapter
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series (RPQN, volume 18 A)

Abstract

The paper is a cellulose fiber base material and consequently it is heterogeneous at different scales. In addition, the paper exhibits two preferential axes of fiber orientation, from which it is easy to define the characteristics of an elementary bi-dimensional fiber network. A third axis, perpendicular to the first, corresponds to the stacking direction of individual networks. Following the example of composite layered media modeling, the paper presents three perpendicular planes of material symmetry. In other words, the paper is commonly assumed to be an orthotropic material [1]. The paper presents also various mechanical behaviors such as elasticity, viscoelasticity, non-linear elasticity. Furthermore the paper properties depend on both the temperature and the hygrometry [2]. At last, paper materials exist in the form of sheets; their thickness (100 µm on average) is very small beside their other dimensions.

Keywords

Cellulose Anisotropy Attenuation Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Baum, Encyclopedia of materials science and engineering, Ed. M.B. Brever, (1986), p. 2911.Google Scholar
  2. 2.
    A.J. Bristow, P. Kolseth, Paper structure and properties, I.F.S.T.,Vol.8 (1986).Google Scholar
  3. 3.
    C.C. Habeger, R.W. Mann, G.A. Baum, Ultrasonic (3) (1979), p. 57.CrossRefGoogle Scholar
  4. 4.
    L. P. Solie, B. A. Auld, JASA 54(1) (1976), p. 50.CrossRefGoogle Scholar
  5. 5.
    D. Royer, E. Dieulesaint, Ondes élastiques dans les solides. Propagation libre et guidée, Tomel, Ed. Masson (1996).Google Scholar
  6. 6.
    J. D. Achenbach, Wave propagation in elastic solids, Ed NH (1973).Google Scholar
  7. 7.
    I.A. Viktorov, Soviet physics-Acoustics 11(1) (1965), p. 1.MathSciNetGoogle Scholar
  8. 8.
    B.A. Auld, Acoustic fields and waves in solids, Vol II (1990).Google Scholar
  9. 9.
    C. Simon, H. Kaczmarek, D. Royer, Progress in paper physics, Stockholm, STFI, (1996), p. 715.Google Scholar
  10. 10.
    M. Deschamps, C. Bescond, Ultrasonics 33(3) (1995), p. 205.CrossRefGoogle Scholar
  11. 11.
    Recueil de normes franÇaises, Papiers, cartons et pâtes, Tome 1, AFNOR (1988).Google Scholar
  12. 12.
    G.A. Baum, Appita 40(4) (1987), p. 288.Google Scholar
  13. 13.
    B. Castagnède, R. E. Mark, Y. B Séo, Journal of Pulp and Paper Science 15(6) (1989), J201.Google Scholar
  14. 14.
    J.F. Waterhouse, TAPPI, 77(1) (1994), p. 120.Google Scholar
  15. 15.
    P.H. Brodeur, M.S. Hall, C. Esworthy, Journal of Acoustical Society of America, 94(4) (1993), p. 2215.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • A. Bonnin
    • 1
  • R. Huchon
    • 1
  • M. Deschamps
    • 1
  1. 1.Laboratoire de Mécanique Physique ESA 5469, CNRSUniversité Bordeaux 1Talence CedexFrance

Personalised recommendations