Nanoscale Viscoelastic Characterization Using Tapping Mode AFM

  • L. Wang
  • K. Wu
  • S. I. Rokhlin
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series (RPQN, volume 18 A)


The tapping mode atomic force microscopy (AFM) has been widely used as a tool to image sample surfaces [1–3]. It has been modeled as a single degree-of-freedom nonlinear oscillator [4–11], In this model, the tip-sample interactions are described by contact theory with adhesion (Johnson-Kendall-Roberts (JKR) theory) [12–14]. The viscoelasticity is considered as a friction force by adding a damping constant. Magonov and Elings [15] presented experimental results which show different phase sensitivity for stiff and soft samples. Anczykowski et al.[16] presented results on amplitude vs. tip-sample separation and showed the existence of hysteresis due to nonlinearity and the transition between attractive and repulsive forces. Kuhle et al [17] demonstrated experimentally the frequency response hysteresis and pointed out the effect of attractive force on this hysteresis using a linear interaction force approximation.


Atomic Force Microscopy Free Vibration Interaction Force Adhesion Force Vibration Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binning, C. F. Quate and C. Gerber, Phys.Rev.Lett., 56, 930(1986).ADSCrossRefGoogle Scholar
  2. 2.
    M. Radmacher, R. W. Tillmann, M. Fritz and H. E. Gaub, Science, 257, 1900 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    H. G. Hansma and J. H. Hoh, Annual Reviews of Biophysics and Biomolecular Structure, 1994.Google Scholar
  4. 4.
    D. Sarid, T. G. Ruskell, R. K. Workman and D. Chen, J. Vac. Sci. Technol. B 14(2), 864(1996).CrossRefGoogle Scholar
  5. 5.
    C. A. Putman, K. O. V. der Werf, B. G. de Grooth, N. F. V. Hulst, and J. Greve, Applied Physics Letters, 64, 2454(1994).ADSCrossRefGoogle Scholar
  6. 6.
    J. P. Spatz, S. Sheiko, M. Moller, R. G. Winkler, P. Reineker and O. Marti, Nanotechnology, 40 (1995).Google Scholar
  7. 7.
    R. G. Winkler, J. P. Spatz, S. Sheiko, M. Moller, P. Reineker and O. Marti, Phys. Rev. B, 54, 8908(1996).ADSCrossRefGoogle Scholar
  8. 8.
    J. Chen, R. K. Workman, D. Sarid and R. Hoper, Nanotechnology, 5, 199 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    J. Tamayo and R. Garcia, Langmuir, 12,4430(1996).CrossRefGoogle Scholar
  10. 10.
    N. A. Burham, O. P. Behrend, Foulevey, G. Gremand, P. J. Gallo, D. Gourdon, E. Dupas, A. J. Kulik, H. M. Pollock and G. A. D. Briggs, Nanotechnology, 8, 67(1997).ADSCrossRefGoogle Scholar
  11. 11.
    G.Y. Chen, R.J. Warmack, A. Huang, and T. Thundat, J. Appl. Phys., 78, 1465 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    D. Maugis and B. Gauthier Manuel, J.Adhesion Sci.Technol., 8, 1311(1994).CrossRefGoogle Scholar
  13. 13.
    K. J. Johnson, Contact Mechanics, Cambridge University Press,1985.Google Scholar
  14. 14.
    N.A. Burnham, R.J. Colton and H.M. Pollock, Nanotechnology, 4, 64–80 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    S. N. Magonov, V. Elings and M. H. Whangbo, Surface Science, 375, 385–391(1997).ADSCrossRefGoogle Scholar
  16. 16.
    R. Anczykowski, D. Kruger and H. Fuchs, Phys. Rev.B, 53,15485(1996).ADSCrossRefGoogle Scholar
  17. 17.
    A. Kuhle, A. H. Sorensen and J. Bohr, J. Appl. Phys., 81,6562(1997).ADSCrossRefGoogle Scholar
  18. 18.
    N. Minorsky, Nonlinear Oscillations, D.Van Nostrand Company, 1962.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • L. Wang
    • 1
  • K. Wu
    • 1
  • S. I. Rokhlin
    • 1
  1. 1.Nondestructive Evaluation Program Edison Joining Technology CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations