Advertisement

Enterotoxin A of Clostridium difficile and α-Gal Epitopes

  • Charalabos Pothoulakis
Chapter
  • 132 Downloads
Part of the Subcellular Biochemistry book series (SCBI, volume 32)

Abstract

Clostridium difficile, a noninvasive Gram positive toxigenic bacterium, is the principal agent of antibiotic-associated diarrhea and colitis, one of the most important complications of antibiotic therapy (Kelly et al., 1994). C. difficile diarrhea and colitis affects millions of patients in hospitals and nursing homes around the world and represents the most frequent form of infectious colitis in hospitalized patients. Thus, up to a quarter of hospitalized patients can be infected with this anaerobic pathogen and many nosocomial outbreaks of C. difficile infection have been described (McFarland et al., 1989). One of the characteristic features of C. difficile colitis is the acute inflammatory infiltrate in the colonic mucosa which is associated with severe destruction of colonic epithelial cells (Kelly et al., 1994). C. difficile infection is a toxin-mediated disease. Studies in animal models coupled with receptor binding experiments documented that C. difficile-toxin A induced diarrhea and intestinal inflammation is mediated by binding of C. difficile toxin A to a carbohydrate receptor containing α-gal epitopes.

Keywords

Brush Border Clostridium Difficile Brush Border Membrane Wheat Germ Agglutinin Fluid Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon, S. S., Mills, D. C, Day, P.A., Henrickson, R. V., Sullivan N. M., and Wilkins. T. D. 1984. Rapid death of infant rhesus monkeys injected with Clostridium difficile toxins A and B.: physiologic and pathophysiologic basis. J. Pediatr. 101:34–40.CrossRefGoogle Scholar
  2. Avila, J. L., Rojas, M., and Galili. U. 1989. Galcd-3Gal carbohydrate epitopes are present on pathogenic American trypanosoma and leismania. J. Immunol. 142:2828–2834.PubMedGoogle Scholar
  3. Castagliuolo, I., Keates, A. C, Qiu, B., Kelly, C. P., Nikulasson. S., Leeman, S. E., and Pothoulakis, C. 1997. Substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats. Proc. Natl. Acad. Sci. (USA). 94:4788–4793.CrossRefGoogle Scholar
  4. Castagliuolo, 1., LaMont. J. T., Letourneau, R., Kelly. C. P, O’Keane, J. C. Jaffer, A., Theoharides. T. C, and Pothoulakis, C. 1994. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholera enterotoxin. Gastroenterology 107:657–65.PubMedCrossRefGoogle Scholar
  5. Castagliuolo, I., LaMont. J. T, Qiu, B., and Pothoulakis. C. 1996. A receptor decoy inhibits the enterotoxic effects of Clostridium difficile toxin A in rat ileum. Gastroenterology. 111:433–438.PubMedCrossRefGoogle Scholar
  6. Castagliuolo, I., Riegler, M., Nikulasson, S., Lu, B., Gerard, C, Gerard, N. P., and Pothoulakis, C. 1998. NK-1 receptor is required in Clostridium difficile-induced enteritis. J. Clin. Invest. 101: 1547–1550.PubMedCrossRefGoogle Scholar
  7. Clark, G. F, Krivan, N. C, Wilkins, T. D., Smith, B. F. 1987. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Galα1–3Galβ1–4GlcNAc sequences. Arch. Biochem. Biophys. 257:217–229.PubMedCrossRefGoogle Scholar
  8. D’Alessandro, M., Mariani, P., Bachetoni, A., Lomanto. D., Mazzochi, P., and Speranza, V. 1998. Anti-Gal antibodies in patients with inflammatory bowel disease. Gastroenterology 114: A958.CrossRefGoogle Scholar
  9. Dillon, S., Rubin, E., Yakubovich, M., Pothoulakis, C, LaMont, J. T., Feig, L. A., and Gilbert, R. J. 1995. Involvement of ras-related Rho proteins in the mechanism of action of Clostridium difficile toxin A and B. Infect. Immun. 63:1421–26.PubMedGoogle Scholar
  10. Dove, C. H., Wang, S. Z., Price, S. B., Phelps, C. J., Lyerly, D. M., Wilkins, T. D., and Johnson, J. L. 1990. Molecular characterization of the Clostridium difficile toxin A gene. Infect. Immun. 58:480–488.PubMedGoogle Scholar
  11. Eglow, R., Pothoulakis, C, Itzkowitz, S., Israel, E. J., O’Keane, C. J., Gong, D., Gao, N., Xu, Y. L., Walker, W. A., and LaMont, J. T. 1992. Diminished Clostridium difficile toxin A sensitivity in newborn rabbit is associated with decreased toxin A receptor. J. Clin. Invest. 90:822–29.PubMedCrossRefGoogle Scholar
  12. Fiocchi, C. 1998. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 115:182–205.PubMedCrossRefGoogle Scholar
  13. Fiorentini, C, and Thelestam, M. 1991}. Clostridium difficile toxin A and its effects on cells. Toxicon. 29:543–567.Google Scholar
  14. Galili, U. 1989. Abnormal expression of α-galactosyl epitopes in am: a trigger for autoimmune processes? Lancet. 2:358–360.PubMedCrossRefGoogle Scholar
  15. Galili, U., Clark, M. R., and Shohet. 1986. Excessive binding of the natural anti-α-galactosyl IgG to sickle red cells may contribute to extravascular cell destruction. J. Clin. Invest. 77:27–33.PubMedCrossRefGoogle Scholar
  16. Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E. A. 1983. Demonstration of a natural anti-galactosyl IgG antibody on thalassemic red blood cells. Blood. 61:1258–1264.PubMedGoogle Scholar
  17. Galili, U., Mandrell, R. E., Hamadeh, M., Shohet, S. B., and Griffis. M. 1988. Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56:1730–1737.PubMedGoogle Scholar
  18. Galili, U., Shohet, S. B., Cobrin, E., Stults. C. L. M., and Macher, B. A. 1988. Man, apes, and old world monkeys differ from other mammalians in the expression of α-galactrosyl epitopes on nucleated cells. J. Biol. Chem. 263:17755–17762.PubMedGoogle Scholar
  19. Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, A. 1984. A unique natural human antibody with α-galactosyl specificity. J. Exp. Med. 160:1519–1531.PubMedCrossRefGoogle Scholar
  20. Goldstein, I., Blake, D., Ebisu, S., Williams, T., and Murphy, L. 1981. Carbohydrate binding studies on the Bandeira simplicifolia I isolectins. J. Biol. Chem. 256:3890–3897.PubMedGoogle Scholar
  21. Hamadeh, R. M., Jarvis, G. A., Galili, U., Mandrell, R. E., Zhou, P., and Griffiss, J. M. 1992. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J. Clin. Invest. 98:1223–1235.CrossRefGoogle Scholar
  22. Hamadeh, R. M., Jarvis, G. A., Zhou, P., Cotleur, A. C, and Griffiss J. M. 1996. Bacterial enzymes can add galactose alpha 1,3 to human erythrocytes and creates a senescence-associated epitope. Infect. Immun. 64:528–534.PubMedGoogle Scholar
  23. Hecht, G., Pothoulakis, C, LaMont J. T., and Madara, J. L. 1988. Clostridium difficile toxin A perturbs cytoskeletal structure and junction permeability in cultured human epithelial cells. J. Clin. Invest. 82:1516–1524.PubMedCrossRefGoogle Scholar
  24. Heerze, L. D., Kelm, M. A., Talbot, J. A., and Armstrong, G. D. 1994. Oligosaccharide sequences attached to an inert support (SYNSORB) as potential therapy for antibiotic-associated diarrhea and pseudomembranous colitis. J. Infect. Dis. 169:1291–6.PubMedCrossRefGoogle Scholar
  25. Johnson, J. L., Phelps, C, Barroso, L., Roberts, M., Lyerly, D., and Wilkins, T. D. 1990. Cloning and expression of the toxin B gene of Clostridium difficile. Current Microbiology. 20:397–401.CrossRefGoogle Scholar
  26. Just, I., Fritz, G., Aktories, K., Giry, M., Poppoff, M. R., Boquet, P., Hegenbarth, S., and von Eichel-Streiber, C. 1994. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 269:10706–10712.PubMedGoogle Scholar
  27. Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C, Mann, M., and Aktories, K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 375:500–503.PubMedCrossRefGoogle Scholar
  28. Just, I., Wilm. M., Selzer, J., Rex. G., von Eichel-Streiber. C., Mann, M., and Aktories, K. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270:13932–36.PubMedCrossRefGoogle Scholar
  29. Kelly, C. P., Pothoulakis, C., and LaMont. J. T. Clostridium difficile colitis. 1994. N. Engl. J. Med. 330:257–262.PubMedCrossRefGoogle Scholar
  30. Krivan, H., Clark. C. F, Smith, D. F., and Wilkins, T. D. 1986. Cell surface binding site for Clostridium difficile enterotoxin: Evidence for a glycoconjugate containing the sequence Gal alpha 1–3Gal betα-4GlcNAc. Infect. Immun. 53:573–581.PubMedGoogle Scholar
  31. Krivan, H. C., and Wilkins, T. D. 1987. Purification ofClostridium difficile toxin A by affinity chromα-tography on immobilizes thyroglobulin. Infect. Immun. 55:1873–77.PubMedGoogle Scholar
  32. Lorenzon, V., and Olsen. W. A. 1982. In vivo responses of rat intestinal epithelium to intraluminal dietary lectins. Gastroenterology. 82:838–848.Google Scholar
  33. Kumada, S., Kusaka, H., Okaniwa. M., Kobayashi. O., and Kusunoki. S. 1997. Encephalomyelitis subsequent to mycoplasma infection with elevated serum anti-Gal antibody. Pediatr. Neurol. 16:241–244.PubMedCrossRefGoogle Scholar
  34. Lyerly, D. M., Johnson. J. L., Frey. S. M., and Wilkins. T. D. 1990. Vaccination against lethal Clostridium difficile enterocolitis with a nontoxic recombinant peptide of toxin A. Curr. Microbiol. 21:29–32.CrossRefGoogle Scholar
  35. Lyerly, D. M., Saum, K. E. MacDonald, D., and Wilkins. T. D. 1985. Effect of toxins A and B given intragastrically to animals. Infect. Immun. 47:349–352.PubMedGoogle Scholar
  36. McFarland, L. V., Mulligan, M. E., Kwok, R. Y., and Stamm W. E. Nosocomial acquisition of Clostridium difficile infection. 1989. N. Engl. J. Med. 320:204–210.PubMedCrossRefGoogle Scholar
  37. Pothoulakis. C. 1996. Pathogenesis of Clostridium difficile-associated diarrhoea. Eur. J. Gastroenterol. Hepatol. 8:1041–1047.PubMedCrossRefGoogle Scholar
  38. Pothoulakis. C. Barone. L. M., Ely. R., Faris. B., Clark. M. E., Franzblau. C. and LaMont JT. 1986. Purification and properties of Clostridium difficile cytotoxin B. J. Biol. Chem. 261:1316–1321.PubMedGoogle Scholar
  39. Pothoulakis. C., Castagliuolo. I., and LaMont. J. T.1998. Neurons and mast cells modulate secretory and inflammatory responses to enterotoxins. News Physiol. Sci. 13:58–63.PubMedGoogle Scholar
  40. Pothoulakis, C., Castagliuolo, I., LaMont. J. T., Jaffer. A., O’Keane. J. C. Snider, M., and Leeman. S. E. 1994. CP-96,345. a substance P antagonist, inhibits rat intestinal responses to toxin A but not cholera toxin. Proc. Natl. Acad. Sci. (USA). 91:947–951.CrossRefGoogle Scholar
  41. Pothoulakis, C., Galili, U., Shen. C. Castagliuolo. I., Kelly. C. P., Nikulasson. S., Dudeja, P., Brasitus, T. A., and LaMont. J.T. 1996. Human anti-Gal binds to the same receptor and mimics the effects of C. difficile toxin A in rat colon. Gastroenterology 110:1704–1712.PubMedCrossRefGoogle Scholar
  42. Pothoulakis, C. Gilbert, R. J, Cladaras. C., Castagliuolo. I., Semenza. G., Hitti. Y., Montcrief. J. S., Linevski. J., Kelly. C. P. Nikulasson. S., Desai. H. P., Wilkins. T. D., and LaMont. J. T. 1996. Rabbit sucrase-isomaltase contains a functional receptor for Clostridium difficile toxin A. J. Clin. Invest. 98:641–649.PubMedCrossRefGoogle Scholar
  43. Pothoulakis, C., LaMont. J. T., Eglow. R., Gao. N., Rubins. J. B., Theoharides. T. C. and Dickey. B. F. 1991. Characterization of rabbit ileal receptors for Clostridium difficile toxin A. Evidence for a receptor-coupled G-protein. J. Clin. Invest. 88:119–125.PubMedCrossRefGoogle Scholar
  44. Pothoulakis, C., Sullivan, R., Melnick, D., Triadafilopoulos, G., Gadenne. A. S., Meshulam, T., and LaMont, J. T. 1988. Clostridium difficile toxin A stimulates intracellular calcium release and chemotactic response in human granulocytes. J. Clin. Invest. 81:1741–1745.PubMedCrossRefGoogle Scholar
  45. Rampai, P., LaMont, J. T., and Trier. J. C. 1978. Differentiation of glycoprotein synthesis in fetal rat colon. Am. J. Physiol. 235:E207–E212.Google Scholar
  46. Riegler, M., Sedivy, R., Pothoulakis, C., Hamilton, G., Zacheri. J., Biscof. G., Cosetini. E., Feil, W., Schiessel, R., LaMont, J. T. and Wenzl, E. 1995. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J. Clin. Invest. 95:2004–2011.PubMedCrossRefGoogle Scholar
  47. Rolfe, R. D. 1988. Asymptomatic intestinal colonization by Clostridium difficile. In: Rolfe, R. D., and Finegold, S. M. eds. Clostridium difficile: its role in intestinal disease. Academic Press, New York, pp:201–25.Google Scholar
  48. Rolfe, R. D. 1991. Binding kinetics of Clostridium difficile toxins A and B to intestinal brush border membranes from infant and adult hamsters. Infect. Immun. 59:1223–30.PubMedGoogle Scholar
  49. Rolfe, D. F., and Song, W. 1993. Purification of a functional receptor for Clostridium difficile toxin A from intestinal brush border membranes of infant hamsters. Clin. Infect. Dis. 16(Suppl 4):S219–27.CrossRefGoogle Scholar
  50. Smith, J. A., Cooke, D. L., Hyde, S., Borrielo, S. P., and Long, R. G. 1997. Clostridium difficile toxin A binding to human intestinal epithelial cells. J. Med. Microbiol. 46:953–958.PubMedCrossRefGoogle Scholar
  51. Sjolander A., Magnusson, K-E., and Latcovic, S. 1984. The effect of concanavalin A and wheat germ agglutinin on the ultrastructure and permeability of the rat intestine. Int. Arch. Allergy Immunol. 75:230–236.CrossRefGoogle Scholar
  52. Sjolander, A., Magnusson, K. E., and Latkovic, S. 1986. Morphological changes of rat small intestine after short-time exposure to concanavalin A or wheat germ agglutinin. Cell Struct. Funct. 11:285–293.PubMedCrossRefGoogle Scholar
  53. Teneberg, S., Lonnroth, I., Torres Loppez, J. F., Galili, U., Olwegard Halvarsson, M., Angsrom, J., and Karlsson K.-A. 1996. Molecular mimicry of the recognition of glycosphingolipids by Galα3Galβ4GlcNAcβ-binding Clostridium difficile toxin A, human natural α-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology. 6:599–609.PubMedCrossRefGoogle Scholar
  54. Thall, A., Ettiene-Decerf, J., Winand, R., and Galili, U. 1991. The α-galactosyl epitope on mammalian thyroid cells. Acta Endocrinol. (Copenh). 124:692–699.PubMedGoogle Scholar
  55. Towbin, H., Rosenfelder, G., Wieslander, J., Avila, J. L., Rojas, M., Szarfman, A., Esser, K., Nowack, H., and Timpl, R. 1987. Circulating antibodies to mouse laminin in Chagas disease, American cutaneous leismaniasis, and normal individuals recognize terminal galactosyl(α 1–3)-galactose epitopes. J. Exper. Med. 166:419–432.CrossRefGoogle Scholar
  56. Triadafilopoulos, G., Pothoulakis, C., O’Brien, M., and LaMont, J. T: 1987. Differential effects of Clostridium difficile toxins A and B on rabbit ileum. Gastroenterology 93:273–79.PubMedGoogle Scholar
  57. Triadafilopoulos, G., Pothoulakis, C., Weiss. R., Giampaolo, C., and LaMont, J.T. 1989. Comparative study of Clostridium difficile toxin A and cholera toxin in rabbit ileum. Role of prostaglandins and leukotrienes. Gastroenterology 97:1186–92.PubMedGoogle Scholar
  58. Tucker, K. D., Carring, P. F., and Wilkins, T. D. 1990. Toxin A of Clostridium difficile is a potent cytotoxin. J. Clin. Microbiol. 28:869–871.PubMedGoogle Scholar
  59. Tucker, K. D, and Wilkins, T. C. 1991. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X. and Y. Infect. Immun. 59:73–8.PubMedGoogle Scholar
  60. von Eichel-Streiber, C. 1993. Molecular biology of Clostridium difficile toxins. In: Sebald, M. (ed). Genetics and Molecular Biology of Anaerobic Bacteria. Springer Verlag, New York, pp 264–289.CrossRefGoogle Scholar
  61. von Eichel-Streiber, C., and Sauerborn. M. 1990. Clostridium difficile toxin A carries a C-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glucosyltransferases. Gene. 96:107–113.CrossRefGoogle Scholar
  62. Wilkins, T. D, and Tucker, K. D. 1989. Clostridium difficile toxin A (enterotoxin) uses Galα1α3Galβ1β4GlcNAc as a functional receptor. Microecol. Ther. 19:225–227.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Charalabos Pothoulakis
    • 1
  1. 1.Division of Gastroenterology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations