α-Galactosyl-Bearing Epitopes as Potent Immunogens in Chagas’ Disease and Leishmaniasis

  • José Luis Avila
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 32)

Abstract

Anti-α-galactosyl (anti-Gal) is a human natural antibody which constitutes as much as 1% of circulating IgG and which interacts specifically with the carbohydrate epitope Galα 1–3 Galβ1– 4GlcNac-R (termed the α-gal epitope). This natural antibody is unique among known human natural antibodies because of its unusually high concentration in the serum (30–100 μg/ ml)( Avila et al., 1989; Davin et al., 1987; Galili et al., 1984), and is presence in all humans (Galili et al., 1984). The only other mammals producing anti-Gal are Old World monkeys and apes (Galili et al., 1987b).

Keywords

Carbohydrate Malaria Plasmodium EGTA Measle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, I.C., Milani, S.R., Gorin, P.A.J., and Travassos, L.R., 1991, Complement mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-α-galactosyl antibodies. J. Immunol. 146: 2394–2400.PubMedGoogle Scholar
  2. Almeida, I.C., Krautz, G.M., Krettli, A.U., and Travassos, L.R., 1993, Glycoconjugates of Trypanosoma cruzi: A 74 Kd antigen of trypomastigotes specifically reacts with lytic anti-α-galactosyl antibodies from patients with chronic Chagas disease. J. Clin. Laborat. Anal. 7: 307–316.CrossRefGoogle Scholar
  3. Almeida, I.C., Ferguson M.A., Schenkman, S., and Travassos, L., 1994, Lytic anti-α-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosylphosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem. J. 304: 793–802.Google Scholar
  4. Alvarado, C.G., Cotterell, A.H., McCurry, K.R., Collins, B.H., Magee, J.C., Berthold, J., Logan, J.S., and Platt, J.L., 1995, Variation in the level of xenoantigen expression in porcine organs. Transplantation 59: 1589–1594.PubMedGoogle Scholar
  5. Andrade, Z., 1985, A patologia da doença de Chagas no homen. Ann. Soc. Belg. Med. Trop. 65 (Suppl 1): 15–30.PubMedGoogle Scholar
  6. Andrade, S.G., and Grimaud, J.A., 1986, Chronic murine myocarditis due to Trypanosoma cruzi-an structural study and immunochemical characterization of cardiac interstitial matrix. Mem. Inst. Oswaldo Cruz 81: 29–41.CrossRefGoogle Scholar
  7. Andrade, S.G., Grimaud, J.A., and Stocker-Guerret, S., 1989, Sequential changes of the connective matrix components of the myocardium (fibronectin and laminin) and evaluation of cardiac fibrosis in mice infected with Trypanosoma cruzi. Am. J. Trop. Med. Hyg. 40: 151–60.Google Scholar
  8. Araujo, M. A., 1989, Lise de Trypanosoma cruzi por soros de pacientes na fase aguda da doenca de Chagas. Ph.D. Thesis, University of Sao Paulo.Google Scholar
  9. Avila, J.L., 1992, Molecular mimicry between Trypanosoma cruzi and host nervous tissues. Acta. Cient. Venez. 43: 330–340.Google Scholar
  10. Avila, J.L., 1993, Glycosyl phosphatidylinositols in Leishmania and Trypanosoma. Trends in Comparat. Biochem. Physiol. 1: 881–906.Google Scholar
  11. Avila, J.L., 1994, Molecular mimicry between Trypanosoma cruzi and host nervous tissues. In: Chagas disease and the nervous system. Pan American Health Organization. Sci. Publ. N° 547, Washington, pp. 268–292.Google Scholar
  12. Avila, J.L., and Rojas, M., 1990, A galactosyl(α1–3)mannose epitope on phospholipids of Leishmania mexicana and L. braziliensis is recognized by trypanosomatid-infected human sera. J. Clin. Microbiol. 28: 1530–1537.PubMedGoogle Scholar
  13. Avila, J.L., Rojas, M., and Reiber, M., 1984, Antibodies to laminin in American cutaneous leishmaniasis. Infect. Immun. 43: 402–406.PubMedGoogle Scholar
  14. Avila, J.L., Rojas, M., and Towbin, H., 1988a, Serological activity against galactosyl-α(1–3)galactose in sera from patients with several kinetoplastida infections. J. Clin. Microbiol. 26: 126–132.PubMedGoogle Scholar
  15. Avila, J.L., Rojas, M., and Garcia, L., 1988b, Persistence of elevated levels of galactosyl-α(1–;3)galactose antibodies in sera from patients cured of visceral leishmaniasis. J. Clin.Microbiol. 26: 1842–1847.PubMedGoogle Scholar
  16. Avila, J.L., Rojas, M., and Galili, U., 1989, Immunogenic Galα 1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J. Immunol. 142: 2828–2834.PubMedGoogle Scholar
  17. Avila, J.L., Rojas, M., and Acosta, A., 1991, Glycoinositol phospholipids from American Leishmania and Trypanosoma spp.: Partial characterization of the glycan cores and the human humoral immune response to them. J. Clin. Microbiol. 29: 2305–2312.PubMedGoogle Scholar
  18. Avila, J.L., Rojas, M., and Velasquez-Avila, G., 1992, Characterization of a natural human antibody with anti-galactosyl(α1–2)galactose specificity that is present at high titers in chronic Trypanosoma cruzi infection. Am. J. Trop. Med, Hyg. 47: 413–421.Google Scholar
  19. Avila, J.L., Rojas, M., and Avila, A., 1996, Cholesterol sulphate-reactive autoantibodies are specifically increased in chronic chagasic human patients. Clin. Exp. Immunol. 103: 40–46.PubMedCrossRefGoogle Scholar
  20. Avila, J.L., Rojas, M., and Avila, A., 1998, Increase in asialoganglioside-and monosialoganglioside-reactive antibodies in chronic Chagas’ disease patients. Am J. Trop. Med. Hyg. 58: 338–342.PubMedGoogle Scholar
  21. Avila. J.L., Rojas. M., Velazquez-Avila. G., Von Der Mark. H., and Timpl., R., 1986. Antibodies to basement membrane protein nidogen in Chagas’ disease and American cutaneous leishmaniasis. J. Clin. Microbiol. 24: 775–778.PubMedGoogle Scholar
  22. Avila, J.L., Rojas. M., Velazquez-Avila. G., and Rieber. M., 1987, Antibodies to laminin in Trypanosoma rangeli-intected subjects. Parasitol. Res. 73: 178–179.PubMedCrossRefGoogle Scholar
  23. Bretana, A., Avila, J.L., Arias-Flores, M., Contreras, M., and Tapia F.J., 1986. Trypanosoma cruzi and American Leishmania spp.: immunocytochemical localization of a laminin-like protein in the plasma membrane. Exp. Parasitol. 61: 168–175.PubMedCrossRefGoogle Scholar
  24. Bretana, A., Avila, J.L., Contreras-Bretana. M., and Tapia, F., 1992. American Leishmania spp. and Trypanosoma cruzi: Galactosylα(1–3)galactose epitope localization by colloidal gold immuno-cytochemistry and lectin cytochemistry. Exp. Parasitol. 74: 27–37.PubMedCrossRefGoogle Scholar
  25. Carrasco. H.A., Barboza. J.S., Inglessis. G., Fuenmayor. A., and Molina. C. 1982, Left ventricular cineangiography in Chagas’ disease: detection of early myocardial damage. Am. Heart J. 104: 595–602.PubMedCrossRefGoogle Scholar
  26. Carreira, J.C., Jones, C. Wait. R., Previato, J.O., and Mendoncα-Previato, L., 1996. Structural variation in the glycoinositol phospholipids of differente strains of Trypanosoma cruzi. GlycoconjugateJ. 13: 955–966.CrossRefGoogle Scholar
  27. Cotterell, A.H., Collins. B.H., Parker. W., Harland. R.C., and Platt, J.L., 1995, The humoral immune response in humans follow ing cross-perfusion of porcine organs. Transplantation 60: 861–864.PubMedGoogle Scholar
  28. Couto, A.S., Goncalves, M.F., Colli. W., and Lederkremer. R.M., 1990, The N-linked carbohydrate chain of the 85 kilodalton glycoprotein from Trypanosoma cruzi trypomastigotes contains sialyl. fucosyl and galactosyl(α1–3)galactose units. Mol. Biochem. Parasitol. 39: 101–108.PubMedCrossRefGoogle Scholar
  29. Couto. A.S., Lederkremer. R.M. de. Colli. W., and Alves. M.J., 1993, The glycosylphosphatidylinositol anchor of the trypomastigote-specific Tc-85 glycoprotein from Trypanosoma cruzi. Metabolic-labeling and structural studies. Eur.J. Biochem. 217: 597–602.PubMedCrossRefGoogle Scholar
  30. Cunhα-Neto, E., Duranti. M., Gruber. A., Zingales. B., De Messias, I., Stolf, N., Bellotti. G., Patarroyo. M. E., Pilleggi. F., and Kalil. J., 1995. Autoimmunity in Chagas disease cardiopathy: Biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen. Proc. Satl. Acad. Sci. USA. 92: 3541–3545.CrossRefGoogle Scholar
  31. Davin, J.C., Malaise, M., Foidart. J.M., and Mahieu. P., 1987. Anti-α-galactosyl antibodies and immune complexes in children with Henoch-Schonlein purpura of IgA nephropathy. Kidney Int. 31: 1132–1139.PubMedCrossRefGoogle Scholar
  32. Editorial, 1965, New light on Chagas’ disease. Lancet. 1: 1150–1151.Google Scholar
  33. Egge, H., Kordowicz. M., Peter-Katalinic. J., and Hanfland. P., 1985, Immunochemistry of l/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes. J. Biol. Chem. 260: 4927–4935.PubMedGoogle Scholar
  34. Ferguson, M.A.J., Homans, S.W., Dwek. R.A., and Rademacher, T.W., 1988, Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239: 753–759.PubMedCrossRefGoogle Scholar
  35. Ferrans, V.J., Milei, J., Tomita. Y., and Storino. R., 1988, Basement membrane thickening in cardiac myocytes and capillaries in chronic Chagas’ disease. Am. J. Cardiol. 61: 1137–1140.PubMedCrossRefGoogle Scholar
  36. Galili, U., Rachmilewitz. E. A., Peleg, A., and Flechner. I., 1984. A unique natural human IgG antibody with anti-α-galactosyl specifity. J. Exp. Med. 160: 1519–1531.PubMedCrossRefGoogle Scholar
  37. Galili, U., Basbaum, C.B., Shohet, S.B., Buehler. J., and Macher. B.A., 1987a. Identification of erythrocyte Galα1–3Gal glycosphingolipids with a mouse monoclonal antibody Gal-13. J. Biol. Chem. 262: 4683–4688.PubMedGoogle Scholar
  38. Galili, U., Clark, M.R., Shohet, S.B., Buehler, J., and Macher, B.A., 1987b, Evolutionary relationship between the anti-Gal antibody and the Galα1–3Gal epitope in primates. Proc. Natl. Acad. Sci. USA 84: 1369–1373.PubMedCrossRefGoogle Scholar
  39. Gazzinelli, R.T., 1992, Natural anti-Gal antibodies prevent, rather than cause, autoimmunity in human Chagas’ disease. Res. Immunol. (36th Forum in Immunology) 142: 164–167.CrossRefGoogle Scholar
  40. Gazzinelli, G., and Brener, Z., 1988, Anti-laminin and specific antibodies in acute Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 82: 574–576.PubMedCrossRefGoogle Scholar
  41. Gazzinelli, R.T., Galvao, L.M.C., Cardoso, J.R., Cancado, J.R., Kreettli, A.U., Brener, Z., and Gazzinelli, G., 1988, Anti-Trypanosoma cruzi and antilaminin antibodies in chagasic patients after specific treatment. J. Clin. Microbiol. 26: 1795–1800.PubMedGoogle Scholar
  42. Gazzinelli, R.T., Pereira, M.E.S., Romanha, A., Gazzinelli, G., and Brener, Z., 1991a, Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunol. 13: 345–356.PubMedCrossRefGoogle Scholar
  43. Gazzinelli, R.T., Romanha, A.J., Fontes, R., Chiari, E., Gazzinelli, G., and Brener, Z., 1991 b. Distribution of carbohydrates recognized by the lectins Euonymus europaeus and Concanavalin A in monoxenic and heteroxenic trypanosomatids. J. Protozool. 38: 320–325.PubMedGoogle Scholar
  44. Geller, R.L., Rubinstein, P., and Platt, J.L., 1994, Variation in expression of porcine xenogeneic antigens. Transplantation 58: 272–274.PubMedGoogle Scholar
  45. Grauen, MR., Houdayer, M., and Hontebeyrie-Joskowciz, M., 1993, Trypanosoma cruzi infection enhances polyreactive antibody response in an acute case of human Chagas’ disease. Clin. Exp. Immunol. 93: 85–92.Google Scholar
  46. Goin, J.C., Borda, E., Denduchis, B., Milei, J., Storino. R., and Sterin-Borda, L., 1990, Anticuerpos circulantes en pacientes chagásicos con actividad colinérgica que regulan la funcion cardiaca. Medicina (Bs.As) 50: 385–386.Google Scholar
  47. Kierszenbaum, F., 1986, Autoimmunity in Chagas’ disease. The debate goes on. Reply. Parasitol Today 2: 22–23.CrossRefGoogle Scholar
  48. Koberle, F., 1968, Chagas’ disease and Chagas’ syndromes: The pathology of American trypanosomiasis. Adv. Parasitol. 6: 63–116.PubMedCrossRefGoogle Scholar
  49. Krettli, A.U., and Brener, Z., 1976, Protective effects of specific antibodies in Trypanosoma cruzi infection. J. Immunol. 116: 755–760.PubMedGoogle Scholar
  50. Krettli, A.U., and Brener, Z., 1982, Resistance against Trypanosoma cruzi associated to anti-living trypomastigotes antibodies. J. Immunol. 128: 2009–2012.PubMedGoogle Scholar
  51. Krettli, A.U., Weisz-Carrington, P., and Nussenzweig, R.S., 1979, Membrane-bound antibodies to bloodstream Trypanosoma cruzi in mice: strain differences in susceptibility to complement-mediated lysis. Clin. Exp. Immunol. 37: 416–423.PubMedGoogle Scholar
  52. Laguens, R.P., Meckert, P.C., and Chambo, J., 1991, Origin and significance of anti-heart and anti-skeletal muscle autoanti-bodies in Chagas’ disease. Res. Immunol. 142: 160–163.PubMedCrossRefGoogle Scholar
  53. Lederkremer, R.M., Lima, C., Ramirez, M.I., and Casai, O.L., 1990, Structural features of the lipopeptidophosphoglycan from Trypanosoma cruzi common with the glycophosphatidylinositol anchors. Eur. J. Biochem. 192: 337–345.PubMedCrossRefGoogle Scholar
  54. Limα-Martins, M.V.C., Sánchez, G., Krettli, A.U., and Brener, Z., 1985, Antibody-dependent cell cytotoxicity against Trypanosoma cruzi is only mediated by protective antibodies. Parasite Immunol. 7: 367–370.CrossRefGoogle Scholar
  55. McConville, M.J., and Bacic, A., 1989, A family of glycoinositol phospholipids from Leishmania major. Isolation, characterization and antigenicity. J. Biol. Chem. 24: 757–766.Google Scholar
  56. McConville, M.J., Homans, S.W., Thomas-Oates, J.E., Dell, A., and Bacic, A., 1990, Structures of the glycoinositol phospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J. Biol. Chem. 265: 7385–7394.PubMedGoogle Scholar
  57. McConville, M.J., Collidge, T.A.C., Ferguson, M.A.J., and Schneider, P., 1993, The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J. Biol. Chem. 268: 15595–15604.PubMedGoogle Scholar
  58. McConville. M.J., and Ferguson, M.A.J., 1993, The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294: 305–324.PubMedGoogle Scholar
  59. Milani, S.R., and Travassos. L.R., 1988. Anti-α-galactosyl antibodies in chagasic patients. Possible biological significance. Brazil. J. Med. Biol. Res. 21: 1275–1286.Google Scholar
  60. Milani, S.R., Oliveira. T.G., and Travassos. L.R., 1988. Protective effect of lytic human antibodies binding to carbohydrate epitopes against trypomastigote infection in mice. Memorias do Instituto Oswaldo Cruz 82 (Suppl): 142.Google Scholar
  61. Milei, J., and Storino. R., 1987. Laminin in chagasic auto-immunity? (Letter to Editor). Parasitai Today 3: 119.CrossRefGoogle Scholar
  62. Milei, J., Storino. R., Fernández-Alonso. G., Beigelman. R., Vanzulli. S., and Ferrans. V.J., 1992. Endomyocardial biopsies in chronic chagasic cardiomyopathy. Cardiology 80: 424–437.PubMedCrossRefGoogle Scholar
  63. Milei, J., Sánchez. J., Storino, R., Yu. Z.X., Denduchis. B., and Ferrans. V.J., 1993, Antibodies to laminin and immunohistochemical localization of laminin in chronic chagasic cardiomyopathy: a review. Mol. Cell Biochem. 129: 161–170.PubMedCrossRefGoogle Scholar
  64. Molina. H.A., Milei. J., and Storino. R., 1984. Chronic Chagas myocardiopathy. Demonstration of in vivo immunoglobulins in heart structures by the immunoperoxidase technique. Cardiology 71: 297–306.PubMedCrossRefGoogle Scholar
  65. Oldstone, M.B.A., 1987. Molecular mimicry and autoimmune diseases. Cell 50: 819–820.PubMedCrossRefGoogle Scholar
  66. PAHO, Division of Communicable Disease Prevention and Control. Communicable Disease Program. HPC/HCT. 1994, Leishmaniasis in the Americas. Epidemiol Bull. 15:8–11.Google Scholar
  67. Palacios-Pru. E., Carrasco. H., Scorza, C. and Espinoza. R., 1989. Ultrastructural characteristics of different stages of human chagasic myocarditis. Am. J. Trop. Med. Hyg. 41: 29–40.PubMedGoogle Scholar
  68. Paulsson. M., Aumailley. M., Deutzmann. R., Timpl. R., Beck. K., and Engel. J., 1987. Lamininnidogen complex. Extraction with chelating agents and structural characterization. Eur. J. Biochem. 166: 11–19.PubMedCrossRefGoogle Scholar
  69. Pearson, R.D., and de Queiroz-Sousa. A., 1996. Clinical spectrum of leishmaniasis. Clin Infect. Dis. 22: 1–13.PubMedCrossRefGoogle Scholar
  70. Petry, K., and Eisen, H., 1989. Chagas’s disease: a model for the study of autoimmune diseases. Parasitai Today 5: 111–116.CrossRefGoogle Scholar
  71. Platt, J.L. 1996, The immunological barriers to xenotransplantation. Crit. Rev. Immunol. 16: 331–358.PubMedGoogle Scholar
  72. Platt, J.L., and Holzknecht. Z.E., 1994. Porcine platelet antigens recognized by human xenoreactive natural antibodies. Transplantation 57: 327–329.PubMedCrossRefGoogle Scholar
  73. Ramasamy, R., and Reese, R.T., 1986, Terminal galactose residues and the antigenicity of Plasmodium falciparum glycoproteins. Mol. Biochem. Parasitol. 19: 91–101.PubMedCrossRefGoogle Scholar
  74. Ramasamy, R., and Rajakaruna, R., 1997, Association of malaria with inactivation of α-1,3-galactosyl transferase in catarrhines. Biochim. Biophys. Acta 1360: 241–246.PubMedCrossRefGoogle Scholar
  75. Salma, N., and Avila, J.L., 1991, Interaction between various strains of T. cruzi and cardiac primary cultures. Acta Cient. Venez. 42: 185.Google Scholar
  76. Sánchez. J.A., Milei. J., Yu. Z.X., Storino. R., Wenthold. R. Jr., and Ferrans, V.J., 1993. Immunohistochemical localization of laminin in the heart of patients with chronic chagasic cardiomyopathy: Relationship to thickening of basement membranes. Amer. Heart J. 126: 1392–1401.PubMedCrossRefGoogle Scholar
  77. Schwimmbeck, P.L., Yu. D.T. Y., and Oldstone. M.B. A., 1987, Autoantibodies to HLA-B27 in the sera of HLA-27 patients with ankylosing spondylitis and Reiter’s syndrome: Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J. Exp. Med. 166: 173–181.PubMedCrossRefGoogle Scholar
  78. Schwimmbeck, P.L., Dyrberg, T., Drachman, D., and Oldstone. M.B. A., 1989, Molecular mimicry and myasthenia gravis: Uncovering a novel site of the acetylcholine receptor that has biologicactivity and reacts immunochemically with herpes simplex virus. J. Clin. Invest. 84: 1174–1180.PubMedCrossRefGoogle Scholar
  79. Schmunis, G.A., 1987, Autoimmunity in Chagas’ disease. Mem. Inst. Oswaldo Cruz 82: 288–310.CrossRefGoogle Scholar
  80. Souto-Padron, T., Almeida, I.C., De Souza, W., and Travassos, L.R., 1994, Distribution of α-galactosyl-containing epitopes on Trypanosoma cruzi trypomastigote and amastigote forms from infected Vero cells detected by chagasic antibodies. J. Euk. Microbiol. 41: 47–54.PubMedCrossRefGoogle Scholar
  81. Souza, M.C., Reis, A.P., Días da Silva, W., and Brener, Z., 1974, Mechanism of acquired immunity induced by Leptomonas pessoai against Trypanosoma cruzi in mice. J. Protozool. 21: 579–584.Google Scholar
  82. Springer, G.F., and Horton, R.F., 1969, Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Invest. 48: 1280–1291.PubMedCrossRefGoogle Scholar
  83. Stefani, M.M.A., Oliveira, E.B., Luquetti, A.O., and Dias Da Silva, W., 1987, Complement independent lysis of Trypanosoma cruzi Y strain by sera from acute phase chagasic patients. C-reactive protein and protein involvement. Memorias do Instituto Oswaldo Cruz 82 (Suppl): 140.Google Scholar
  84. Szarfman, A., Terranova, V.P., Rennard, S.I., Foidart, J.M., De Fatima Lima, M., Scheinman, J.I., and Martin, G.R., 1982, Antibodies to laminin in Chagas’ disease. J. Exp. Med. 155: 1161–1171.PubMedCrossRefGoogle Scholar
  85. Takehara, H.A., Perini, A., Da Silva, M.H., and Mota, I., 1981. Trypanosoma cruzi: role of different antibody classes in protection against infection in the mouse. Exp. Parasitai. 52: 137–146.CrossRefGoogle Scholar
  86. Takeuchi, Y., Porter, C.D., Strahan, K.M., Preece, A.F., Gustafsson, K., Cosset, F-L., Weiss, R.A., and Colins, M.K.L., 1996, Sensitization of cells and retroviruses to human serum by (α-1–3)galactosyltransferase. Nature 379: 85–88.PubMedCrossRefGoogle Scholar
  87. Thall, A.D., Maly, P., and Lowe, J.B., 1995, Oocyte gal-α-1,3gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270: 21437–21440.PubMedCrossRefGoogle Scholar
  88. Towbin, H., Rosenfelder, G., Wieslander, J., Avila, J.L., Rojas, M., Szarfman, K., Esser, K., Nowack, H., and Timpl, R., 1987, Circulating antibodies to mouse laminin in Chagas disease, American cutaneous leishmaniasis, and normal individuals recognize terminal galactosyl(α-1–3)galactose epitopes. J. Exp. Med. 166: 419–432.PubMedCrossRefGoogle Scholar
  89. Unterkircher, C., Avrameas, S., and Ternynck, T., 1993, Autoantibodies in the sera of Trypanosoma cruzi-infected individuals with or without clinical Chagas’ disease. J. Clin. Laborat. Anal. 7: 60–69.CrossRefGoogle Scholar
  90. Van der Rijn, I., Zabriskie, J.B., and McCarty, M., 1977, Group A streptococcal antigens cross-reactive with myocardium: purification of heart-reactive antibody and isolation and characterization of the streptococcal antigen. J. Exp. Med. 146: 579–599.PubMedCrossRefGoogle Scholar
  91. Van Voorhis, W.C., Schlekewy, L., and Trong, H.L., 1991, Molecular mimicry by Trypanosoma cruzi: The Fl-160 epitope that mimics mammalian nerve can be mapped to a 12-amino acid peptide. Proc. Natl. Acad. Sci.USA. 88: 5993–5997.PubMedCrossRefGoogle Scholar
  92. WHO, 1995, Twelfth Programme Report of the UNDP/World Bank/WHO Special Programme for research and training in tropical diseases. In WHO-Tropical Diseases Research, World Health Organization, Geneva, p. 12Google Scholar
  93. Winter, G., Fuchs, M., McConville, M.J., Stierhof. Y-D., and Overath, P., 1994, Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J. Cell. Sci. 107: 2471–2482.PubMedGoogle Scholar
  94. Wolff, P.G., Kuhl, U., and Schultheiss, H-P., 1989, Laminin distribution and autoantibodies to laminin in dilated cardiomyopathy and myocarditis. Am. Heart J. 117: 1303–1309.PubMedCrossRefGoogle Scholar
  95. Wood, C., Kabat, E.A., Murphy, L.A., and Goldstein, I.J., 1979, Inmunochemical studies on the combining sites of two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys. 198: 1–8.PubMedCrossRefGoogle Scholar
  96. Zamze, S.E., Ashford, D.A., Wooten, E.W., Rademacher, T.W., and Dwek, R.A., 1991, Structural characterization of the asparagine-linked oligosaccharides from Trypanosoma brucei type II and III variant surface glycoproteins. J. Biol. Chem. 266: 20244–20261.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • José Luis Avila
    • 1
  1. 1.Instituto de BiomedicinaCaracasVenezuela

Personalised recommendations