Advertisement

α-Gal Epitopes on Viral Glycoproteins

  • Russell P. Rother
  • Uri Galili
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 32)

Abstract

The α-gal epitope (Galα1,3Galβl,4GlcNAc-R) is a terminal glycosidic structure that is expressed on the surface of cells from most mammalian species other than humans, apes and Old World monkeys (Galili et al., 1988a; Galili et al., 1987). The terminal α-galactosyl unit of this epitope is added to nascent glycolipids and glycoproteins in the Golgi apparatus by α1,3galactosyltransferase (α1,3GT). In primates lacking the α-gal epitope, the α1,3GT gene is not transcribed, and nonsense mutations are present within the coding region of some species (Galili and Swanson, 1991; Larsen et al., 1990a; Joziasse et al., 1989). The presence of a functional α1,3GT in New World monkeys suggests that this gene was inactivated in ancestral Old World monkeys and apes after their divergence from New World monkeys (Galili et al., 1988a). A detailed comparison of the α1,3GT pseudogene sequences in Old World monkeys and apes further suggests that this gene was inactivated after these two groups diverged from each other (Galili and Andrews, 1995; Galili and Swanson, 1991).

Keywords

Envelop Virus World Monkey Carbohydrate Chain Normal Human Serum Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.A. and Todaro, G.J., 1970. Transformation and virus growth by murine sarcoma viruses in human cells, Nature 225:458–459.PubMedGoogle Scholar
  2. Air, G.M. and Laver, W.G., 1990, Influenza Viruses, in: lmmunochemistry of Viruses. II. The Basis for Serodiagnosis, and Vaccines (M.H. V. van Regemorted. and A.R. Neurath, eds.), Elsevier Science Publications, Amsterdam, pp. 171–216.Google Scholar
  3. Almeida, I.C., Milani, S.R., Gorin, A.J., and Travoassos, L.R., 1991, Complement-mediated lysis of Trypanosoma cruzi tryptomastigotes by human anti α-galactosyl antibodies, J. Immunol. 146:2394–2400.PubMedGoogle Scholar
  4. Anderson, W.A., 1992, Human gene therapy, Science 256:808–813.PubMedGoogle Scholar
  5. Avila, J.L., Rojas, M., and Galili, U., 1989, Immunogenic Galα 1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania, J. Immunol. 142:2828–2834.PubMedGoogle Scholar
  6. Banapour, B., Sernatinger, J., and Levy, J.A., 1986, The AIDS-associated retrovirus is not sensitive to lysis or inactivation by human serum, Virol. 152:268–271.Google Scholar
  7. Barbacid, M., Bolognesi, D., and Aaronson, S.A., 1980, Humans have antibodies capable of recognizing oncoviral glycoproteins: demonstration that these antibodies are formed in response to cellular modification of glycoproteins rather than as consequence of exposure to virus, Proc. Natl. Acad. Sci. USA 77:1617–1621.PubMedGoogle Scholar
  8. Bartholomew, R.M., Esser, A.F.,and Muller-Eberhard, H.J., 1978, Lysis of oncornaviruses by human serum: isolation ofthe viral complement (Cl) receptor and identification aspl5E,J. Exp. Med. 147:844–53.PubMedGoogle Scholar
  9. Basu, M. and Basu, S., 1973, Enzymatic synthesis of a blood group-related pentaglycosyl ceramide by an α-galactosyltransferase from rabbit bone marrow, J. Biol. Chem. 248:1700–1706.PubMedGoogle Scholar
  10. Betteridge, A. and Watkins, W.M., 1983, Two α-2-D-galactosyltransferases in rabbit stomach mucosa with different acceptor substrate specificities, Eur. J. Biochem. 132:29–35.PubMedGoogle Scholar
  11. Blake, D.D. and Goldstein, I.J., 1981, An α-D-galactosyltransferase in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide [α-D-galactose (1–3)-N-acetyllactosamine], J. Biol. Chem. 256:5387–5393.PubMedGoogle Scholar
  12. Blanken, W.M. and Ban den Eijnden, D.H., 1985, Biosynthesis of terminal Galα 1–3Galβ 1–4GIcNAc-R oligosaccharide sequence on glycoconjugates: purification and acceptor specificity of a UDP-Gal: N-acetyllactosaminide α 1-3 galactosyltransferase, J. Biol. Chem. 260:12927–12934.PubMedGoogle Scholar
  13. Boiron, R.R., Bernard, C., and Chuat, J.C., 1969, Replication of mouse sarcoma virus Moloney strain (MSV-N) in human cells, Proc. Amer. Assoc. Cancer Res. 10:8.Google Scholar
  14. Burke, D.J. and Keegstra, K., 1976, Purification and composition ofthe proteins from Sindbis virus grown in chick and BHK cells, J. Virol. 20:676–686.PubMedGoogle Scholar
  15. Cardoso, J.E., Branchereau, S., Jeyaraj, P.R., Houssin, D., Danos, O., and Heard, J.-M., 1993, In situ retrovirus-mediated gene transfer into dog liver, Hum. Gene Ther. 4:411–418.PubMedGoogle Scholar
  16. Chang, G.-J.J. and Trent, D.W., 1987, Nucleotide sequence of the genome region encoding the 26S mRNA of eastern equine encephalomyelitis virus and the deduced amino acid sequence of the viral structural proteins, J. Gen. Virol. 68:2129–2142.PubMedGoogle Scholar
  17. Cooper, N.R., Jensen, F.C., Welsh, R.M., Jr., and Oldstone, M.B. A., 1976, Lysis of RN A tumor viruses by human serum: direct antibody-independent triggering ofthe classical complement pathway, J. Exp. Med. 144:970–984.PubMedGoogle Scholar
  18. Cornetta, K., Moen, R.C., Culver, K., Morgan, R.A., McLachlin, J.R., Stu S., Selegue, J., London, W., Blaese, R.M., and Anderson, W.F., 1990, Amphotropic murine leukemia retrovirus is not an acute pathogen for primates, Hum. Gene Ther. 1:15–30.PubMedGoogle Scholar
  19. Cornetta, K., Morgan, R.A., and Anderson, W.F., 1991, Safety issues related to retroviral-mediated gene transfer in humans, Hum. Gene Ther. 2:5–14.PubMedGoogle Scholar
  20. Cosset, F.-C, Takeuchi, Y., Battini, J.-L., Weiss, R.A., and Collins, M.K.L., 1995, High-titer packaging cells producing recombinant retroviruses resistant to human serum, J. Virol. 69:7430–7436.PubMedGoogle Scholar
  21. Culver, K.W., 1994, Clinical applications of gene therapy for cancer, Clin. Chem. 40:510–512.PubMedGoogle Scholar
  22. Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H., and Blaese, R.M., 1992, In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors, Science 256:1550–1552.PubMedGoogle Scholar
  23. Dalmasso. A.P., Vercellotti, G.M., Fischel. R.J., Bolman. R.M., Bach. F.H., and Platt. J.L., 1992. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am. J. Paihnl. 140:1 157–1168.Google Scholar
  24. Donahue, R.E., Kessler. S.W., Bodine. D., Goodman. S., Agncola. B., Byrne. E., Raffeld, M., Moen. R., Bacher, J., Zsebo. K.M., and Nienhuis. A.W., 1992. Helper virus induced T cell Lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 176:1125–1135.PubMedGoogle Scholar
  25. Famulari, N.G., 1983, Murine leukemia viruses with recombinam env genes: a discussion of their role in leukemogenesis. Curr. Top. Microbiol. Immunol. 103:103–108.Google Scholar
  26. Ferry, N., Duplessis. O., Houssin. D., Danos. O., and Heard, J.-M., 1991. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc. Nail. Acad. Sci. USA 88:8377–8381.Google Scholar
  27. Galili, U., 1993a, Evolution and pathophysiology of the human natural anti-α-galactosyl IgG (anti-Gal) antibody. Springer Semin. Immunopathol. 15:155–171.PubMedGoogle Scholar
  28. Galili, U., 1993b. Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol. Today 14:480–482.PubMedGoogle Scholar
  29. Galili, U. and Andrews. P., 1995. Suppression of α-galactosyl epitopes synthesis and production of the natural anti-gal antibody: a major evolutionary event in ancestral Old World primates. J. Hum. Evol. 29:433–443.Google Scholar
  30. Galili, U., and Swanson, K., 1991. Gene sequences suggest inactivation of α1,3galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Satl. Acad. Sci. USA 88:7401–7404.Google Scholar
  31. Galili, U., Rachmilewitz, E.A., Peleg, A., and Flechner. I., 1984, A unique natural human IgG antibody with anti-α-galactosyl specificity.J. Exp. Med. 160:1519–1531.PubMedGoogle Scholar
  32. Galili, U., Macher, B.A., Buehler, J., and Shohet, S.B., 1985. Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1–3)-linked galactose residues. J. Exp. Med. 162:573–582.PubMedGoogle Scholar
  33. Galili. U., Clark, M.R., Shohet. S.B., Buehler, J., and Macher, B.A., 1987. Evolutionary relationship between the natural anti-Gal antibody and the Galα1–3Gal epitope in primates. Proc. Satl. Acad. Sci. USA 84:1369–1373.Google Scholar
  34. Galili, U., Shohet, S.B., Kobrin. E., Stults. C.L.M., and Macher. B.A., 1988a. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263:17755–17762.PubMedGoogle Scholar
  35. Galili, U., Mandrell, R.E., Hamadeh. RM. Shohet. S.B., and Griffis. J.M., 1988b, Interaction between human natural anti-agalactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56:1730–1737.PubMedGoogle Scholar
  36. Galili, U., Repik, P.M., Anaraki, F., Mozdzanowska, K., Washko, C. and Gerhard. W., 1996, Enhancement of antigen presentation of influenza virus hemagglutinin by the natural human anti-Gal antibody. Vaccine 256:160–178.Google Scholar
  37. Galili, U., La Temple. D.C.and Radic. M.Z., 1998. A sensitive assay for measuring α-gal epitope expression by a monoclonal anti-Gal antibody. Transplantation 65:1129–1132.PubMedGoogle Scholar
  38. Geyer, R., Geyer, H., Stirm, S., Hensmann, C. Schneider, J., Dabrowski, U., and Dabrowski, J., 1984, Major oligosaccharides in the glycoprotein of Friend murine leukemia virus: structure elucidation by one-and two-dimensional proton nuclear magnetic resonance and methylation analysis. Biochem. 23:5628–5637.Google Scholar
  39. Goochee, CF., Gramer, M.J., Andersen, D.C., Baher, J.B., and Rasmussen, J.R., 1991, The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology 9:1347–1355.PubMedGoogle Scholar
  40. Hamadeh, R.M., Jarvis, C.A., Galili, U., Mandrell, R.E., Zhou. P., and Griffiss, J.M., 1992, Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces, J. Clin. Invest. 89:1223–1235.PubMedGoogle Scholar
  41. Hamadeh, R.M., Galili, U., Zhou, P., and Griffis, J.M., 1995a, Anti-α-galactosyl immunoglobulin A (IgA), IgG and IgM in human secretions. Clin. Diagnos. Lab. Immunol. 2:125–131.Google Scholar
  42. Hamadeh, R.M., Estabrook, M.M., Zhou, P., Jarvis, G.A., and Griffiss, J.M., 1995b, Anti-gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing, Infect. Immun. 63:4900–4906.PubMedGoogle Scholar
  43. Hatzoglou, M., Lamers, W., Bosch, F., Wynshaw-Boris, A., Clapp, D.W., and Hanson, R.W., 1990, Hepatic gene transfer in animals using retroviruses containing the promoter from the gene for phosphoenolpyruvate carboxykinase, J. Biol. Chem. 265:17285–17293.PubMedGoogle Scholar
  44. Hoshino, H., Tanaka, H., Miwa, M., and Okada, H., 1984, Human T-cell leukemia virus is not lysed by human serum, Nature 310:324–325.PubMedGoogle Scholar
  45. Hsieh, P., Rosner, M.R., and Robbins, P.W., 1983. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins, J. Biol. Chem. 258:2548–2554.PubMedGoogle Scholar
  46. Jensen, F.C., Girardi, A.J., Gilden, R.V., and Koprowski, H., 1964, Infection of human and simian tissue cultures with Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 52:53–57.PubMedGoogle Scholar
  47. Jolly, D., 1994, Viral vector systems for gene therapy, Cancer Gene Ther. 1:51–64.PubMedGoogle Scholar
  48. Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.J., and Shaper, N.L., 1989, Bovine α1–3-galactosyltransferase: isolation and characterization of a cDNA clone, J. Biol. Chem. 264:14290–14297.PubMedGoogle Scholar
  49. Kiel, W., Geyer, R., Dabrowski, J., Dabrowski, U., Niemann, H., Strim. S., and Klenk, H.-D., 1985, Carbohydrates of influenza virus. Structure elucidation of the individual glycans of the hemagglutinin by two-dimensional H NMR, and methylation analysis, EMBOJ. 4:2711–2720.Google Scholar
  50. Klenk, H.-D., 1990, II. Influence of Glycosylation on Antigenicity of Viral Proteins, in: Immunochemistry of Viruses (M.H.V. van Regemortel, and A.R. Neurath, eds.), Elsevier Science Publications, New York, pp. 25–37.Google Scholar
  51. Klenk, H.-D. and Rott, R., 1980, Cotranslational and posttranslational processing of viral glycoproteins, Curr. Top. Microbiol. Immunol. 90:19–48.PubMedGoogle Scholar
  52. Kornfeld, R. and Kornfeld, S., 1976, Comparative aspects of glycosylation structure, Ann. Rev. Biochem. 45:217–237.PubMedGoogle Scholar
  53. Kornfeld, R. and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem. 54:631–664.PubMedGoogle Scholar
  54. Larsen, R.D., Riverα-Marrero, C.A., Ernst, L.K., Cummings. R.D., and Lowe, J.B., 1990a, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal β-D-Gal(l,4)-D-GlcNAc α(1,3)galactosyltransferasecDNA, J. Biol. Chem. 265:7055–7062.PubMedGoogle Scholar
  55. Larsen, R.D., Ernst, L.K., Nair, R.P., and Lowe, J.B., 1990b, Molecular cloning, sequence, and expression of a human GDP-L-fucose:β-D-galactoside 2-α-L-fucosyltransferase cDN A that can form the H blood group antigen, Proc. Natl. Acad. Sci. USA 87:6674–6678.PubMedGoogle Scholar
  56. La Temple, D.C., and Galili, U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α,3galactosyltransferase, Xenotransplantation (in press).Google Scholar
  57. Lemischka, I.R., Raulet, D.H., and Mulligan, R.C., 1986, Developmental potential and dynamic behavior of hematopoietic stem cells. Clin. Diagnos. Lab. Immunol. 45:917–927.Google Scholar
  58. Lower, J., Davidson, E.A., Teich, N.M., Weiss, R.A., Joseph, A.P., and Kurth, R., 1981, Hetrophil human antibodies recognize oncovirus envelope antigens: epidemiological parameters and immunological specificity of the reaction, Virol. 109:409–417.Google Scholar
  59. Marschang, P., Sodroski, J., Wurzner, R., and Dierich, M.P., 1995, Decay-accelerating factor (CD55) protects human immunodeficiency virus type 1 from inactivation by human complement, Eur. J. Immunol. 25:285–290.PubMedGoogle Scholar
  60. Miller, A.D., 1992, Human gene therapy comes of age. Nature 357:455–460.PubMedGoogle Scholar
  61. Miller, A.D. and Rosman, G.J., 1989, Improved retroviral vectors for gene transfer and expression, Biotechniques 7:980–990.PubMedGoogle Scholar
  62. Moorman, D.W., Butler. D.A., Stanley. J.D., Lamsam. J.L., Ackermann. M.R., Jacobson. C.D., and Culver, K.W., 1994. Survival and toxicity of xenogeneic murine retroviral vector producer cells in liver. J. Surg. Oncol. 57:152–156.PubMedGoogle Scholar
  63. Morris, C.D., 1988, Eastern Equine Encephalomyelitis. in: The Arhoviruses: Epidemiology and Ecology (T.P. Month, ed.). CRC Press. Boca Raton, pp. 1–20.Google Scholar
  64. Muller-Eberhard. H.J., 1988, Molecular organization and function of the complement system. Ann. Rev Biochem. 57:321–347.PubMedGoogle Scholar
  65. Naldini, L., Blomer, U., Gallay, P., Ory. D., Mulligan, R., Gage. F.H., Verma. I.M., and Trono. D., 1996, In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267.PubMedGoogle Scholar
  66. Neethling. F.A., Koren. E., Ye. Y., Richards. S.V., Kujundzic. M., Oriol, R., and Cooper. D.K.C., 1994, Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by α-galactosyl oligosaccharides. Transplantation 57:959–963.PubMedGoogle Scholar
  67. Oldfield. E.H. and Ram. Z., 1995. Intrathecal gene therapy for the treatment of leptomeningeal carcinomatosis. Hum. Gene Ther. 6:55–85.PubMedGoogle Scholar
  68. Oldfield, E.H., Ram, Z., Culver, K.W., Blaese, R.M., and DeVroom. H.L., 1993. Gene therapy for the treatment of brain tumors using intrα-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir, Hum. Gene Ther. 4:39–69.PubMedGoogle Scholar
  69. Platt, J.L., Vercellotti, G.M., Dalmasso, A.P., Matas. A.J., Bolman, R.M., Najarian, J.S., and Bach, F.H., 1990, Transplantation of discordant xenografts: a review of progress. Immunol. Today 11:456–457.Google Scholar
  70. Rademacher, T.W., Parekh, R.B., and Dwek. R.A., 1988, Glycobiology, Ann. Rev. Biochem. 57:785–838.PubMedGoogle Scholar
  71. Raffel, C., Culver, K., Kohn. D., Nelson, M., Siegel, S., Gillis, F., Link. C.J., and Villablanca. J.G., 1994, Gene therapy for the treatment of recurrent pediatric malignant astrocytomas with in vivo tumor transduction with the herpes simplex thymidine kinase gene/ganciclovir system. Hum. Gene Ther. 5:863–890.PubMedGoogle Scholar
  72. Ram, Z., Culver, K.W., Walbridge, S., Blaese, R.M., and Oldfield, E.H., 1993a, In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats, Cancer Res. 53:83–88.PubMedGoogle Scholar
  73. Ram, Z., Culver, K.W., Walbridge. S., Frank. J.A., Blaese, R.M., and Oldfield, E.H., 1993b, Toxicity studies of retroviral-mediated gene transfer for the treatment of brain tumors, J. Neurosurg. 79:400–407.PubMedGoogle Scholar
  74. Ram, Z., Walbridge, S., Heiss. J.D., Culver, K.W., Blaese, R.M., and Oldfield, E.H., 1994a, In vivo transfer of the human interleukin-2 gene: negative tumoricidal results in experimental brain tumors, J. Neurosurg. 80:535–540.PubMedGoogle Scholar
  75. Ram, Z., Walbridge, S., Oshiro, E.M., Viola. J.J., Chiang, Y., Mueller, S.N., Blaese. R.M., and Oldfield, E.H., 1994b. Intrathecal gene therapy for malignant leptomeningeal neoplasia. Cancer Res. 54:2141–2145.PubMedGoogle Scholar
  76. Ram, Z., Walbridge, S., Shawker. T., Culver. K.W., Blaese, R.M., and Oldfield. E.H., 1994c, The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats, J. Neurosurg. 81:256–260.PubMedGoogle Scholar
  77. Reed, D.J., Lin, X., Thomas, T.D., Birks, C.W., Tang, J., and Rother, R.P., 1997, Alteration of glycosylation renders HIV sensitive to inactivation by normal human serum, J. Immunol. 159:4356–4361.PubMedGoogle Scholar
  78. Repik, P.M., Strizki, J.M., and Galili, U., 1994, Differential host-dependent expression of α-galactosyl epitopes on viral glycoproteins: a study of eastern equine encephalitis virus as a model, J. Gen. Virol. 75:1177–1181.PubMedGoogle Scholar
  79. Rettinger, S.D., Ponder. K.P., Saylors, R.L., Dennedy, S.C, Hafenrichter, D.G., and Flye, M.W., 1993, In vivo hepatocyte transduction with retrovirus during in-flow occlusion, J. Surg. Res. 54:418–425.PubMedGoogle Scholar
  80. Rettinger, S.D., Kennedy, S.C., Wu, X., Saylors, R.L., Hafenrichter, D.G., Flye, M.W., and Ponder, K.P., 1994, Liver-directed gene therapy: quantitative evaluation of promoter elements by using in vivo retroviral transduction, Proc. Natl. Acad. Sci. USA 91:1460–1464.PubMedGoogle Scholar
  81. Rollins, S.A., Birks, C.W., Setter, E., Squinto, S.P., and Rother, R.P., 1996, Retroviral vector producer cell killing in human serum is mediated by natural antibody and complement: strategies for evading the humoral immune system. Hum. Gene Ther. 7:619–626.PubMedGoogle Scholar
  82. Rother, R.P. and Squinto, S.P., 1996, The α-galactosyl epitope: a sugar coating that makes viruses and cells unpalatable, Cell 86:185–188.PubMedGoogle Scholar
  83. Rother, R.P., Fodor, W.L., Springhorn, J.P., Birks. C.W., Setter, E., Sandrin, M.S., Squinto, S.P., and Rollins, S.A., 1995a, A novel mechanism of retrovirus inactivation in human serum mediated by anti-αgalactosyl natural antibody, J. Exp. Med. 182:1345–1355.PubMedGoogle Scholar
  84. Rother, R.P., Squinto, S.P., Mason, J.M., and Rollins, S.A., 1995b, Protection of retroviral vector particles in human blood through complement inhibition, Hum. Gene Ther. 6:429–435.PubMedGoogle Scholar
  85. Russell, D.W., Berger, M.S., and Miller, A.D., 1995, The effects of human serum and cerebrospinal fluid on retroviral vectors and packaging cell lines, Hum. Gene Ther. 6:635–641.PubMedGoogle Scholar
  86. Saifuddin, M., Parker, C.J., Peeples, M.E., Gorny. M.K., Zollα-Pazner, S., Ghassemi, M., Rooney, I.A., Atkinson, J.P., and Spear, G.T., 1995, Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1, J. Exp. Med. 182:501–509.PubMedGoogle Scholar
  87. Sandrin, M.S., Vaughan, H.A., Dabkowski, P.L., and McKenzie. I.F.C., 1993, Anti-pig IgM antibodies in human serum react predominantly with gal(α1–3)gal epitopes, Proc. Natl. Acad. Sci. USA 90:11391–11395.PubMedGoogle Scholar
  88. Sandrin, M.S., Fodor, W.L., Mouhtouris, E., Osman, N., Cohney, S., Rollins, S.A., Guilmette, E.R., Setter, E., Squinto, S.P., and McKenzie. I.F.C., 1995, Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nature Med. 1:1261–1267.PubMedGoogle Scholar
  89. Santer. U.V., DeSantis, R., Hard, K.J., van Kuik. J.A., Vliegenthart, J.F.G., Won, B., and Glick. M.C., 1989, N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae, Eur. J. Biochem. 181:249–260.PubMedGoogle Scholar
  90. Schlesinger, M.J. and Schlesinger. S., 1987a. Formation and assembly of alphavirus glycoproteins, in: The Togaviridae and Flaviviridae (S. Schlesinger. and M. J. Schlesinger. eds.). Plenum Press. New York. pp. 121–148.Google Scholar
  91. Schlesinger, M.J. and Schlesinger, S., 1987b. Domains of virus glycoproteins. Advances in Virus Research 33:1–44.PubMedGoogle Scholar
  92. Schulze, I.T., 1970, The structure of influenza virus. I. The polypeptides of the virion, Virol. 41:890–904.Google Scholar
  93. Smith, D.F., Larsen, R.D., Mattox, S., Lowe, J.B., and Cummings, R.D., 1990. Transfer and expression of a murine UDP-Gal:β-D-Gal-α1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells, J. Biol. Chem. 265:6225–6234.PubMedGoogle Scholar
  94. Snyder, H.W., Jr. and Fleissner, E., 1980. Specificity of human antibodies to oncovirus glycoproteins: recognition of antigen by natural antibodies directed against carbohydrate structures. Proc. Natl. Acad. Sci. USA 77:1622–1626.PubMedGoogle Scholar
  95. Spear, G.T., Lurain, N.S., Parker, C.J., Ghassemi. M., Payne, G.H., and Saifuddin, M., 1995. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses, J. Immunol. 155:4376–4381.PubMedGoogle Scholar
  96. Stollar, V., Stollar, B.D., Koo, K., Harrap. K.A., and Schlesinger, W.R., 1976, Sialic acid contents of Sindbis virus from vertebrate and mosquito cells: equivalence of biological and immunological viral properties, Virol. 69:104–115.Google Scholar
  97. Strauss, J.H., Burge, B.W., and Darnell, J.E., 1970, Carbohydrate content of the membrane protein of Sindbis virus, J. Mol. Biol. 47:437–448.PubMedGoogle Scholar
  98. Strauss, J.H. and Strauss, E.G., 1977, Togaviruses, in: The Molecular Biology of Animal Viruses (D.P. Nayak, ed.), Marcel Dekker, New York, pp. 111–166.Google Scholar
  99. Takamiya, Y., Short, M.P., Moolten, F.L., Fleet, C., Mineta, T., Breakefield, X.O., and Martuza, R.L., 1993, An experimental model of retrovirus gene therapy for malignant brain tumors, J. Neurosurg. 79:104–110.PubMedGoogle Scholar
  100. Takeuchi, Y., Cosset, F.-L., Lachmann. P.J., Okada. H., Weiss. R.A., and Collins, M.K.L., 1994, Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell, J. Virol. 68:8001–8007.PubMedGoogle Scholar
  101. Takeuchi, Y., Porter, C.D., Strahan, K.M., Preece. A.F., Gustafsson, K., Cosset, J.-L., Weiss, R.A., and Collins, M.K.L., 1996, Sensitization of cells and retroviruses to human serum by (α1–3) galactosyltransferase. Nature 379:85–88.PubMedGoogle Scholar
  102. Teich, N.M., Weiss, R.A., Salahuddin. S.Z., Gallagher. R.E., Gillespie. D.H., and Gallo, R.C., 1975, Infective transmission and characterization of a C-type virus released by cultured human myeloid leukemia cells, Nature 256:551–555.PubMedGoogle Scholar
  103. Thall, A.D., Maly, P., and Lowe, J.B., 1995. Oocyte Galα1,3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270:21437–21440.PubMedGoogle Scholar
  104. Thiry, L., Cogniaux-Le Clerc. J., Content. J., and Tack. L., 1978, Factors which influence inactivation of vesicular stomatitis virus by fresh human serum. Virol. 87:384–393.Google Scholar
  105. Tsichlis. P.N., 1987, Oncogenesis by Moloney murine leukemia virus. Anticancer Res. 7:171–180.PubMedGoogle Scholar
  106. Tsichlis, P.N. and Lazo. P.A., 1991. Virus-host interactions and the pathogenesis of murine and human oncogene retroviruses. Curr. Top. Microbiol. Immunol. 171:95–171.PubMedGoogle Scholar
  107. Vaughan, H.A., Loveland. B.E., and Sandrin. M.S., 1994. Galα( 1.3)gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies, Transplantation 58:879–882.PubMedGoogle Scholar
  108. Welsh, R.M., Jr., 1977, Host cell modification of lymphocytic choriomeningitis virus and Newcastle disease virus altering viral inactivation by human complement, J. Immunol. 118:348–354.PubMedGoogle Scholar
  109. Welsh, R.M., Jr., Cooper, N.R., Jensen. F.C., and Oldstone. M.B.A., 1975. Human serum lyses RNA tumour viruses. Nature 257:612–614.PubMedGoogle Scholar
  110. Welsh, R.M., Jr., Lampert, P.W., Burner. P.A., and Oldstone. M.B.A., 1976. Antibody-complement interactions with purified lymphocytic choriomeningitis virus. Virol. 73:59–71.Google Scholar
  111. Welsh, R.M., Jr., O’Donnell. C.L., Reed, D.J., and Rother, R.P., 1998, Evaluation of the galα1–3gal epitope as a host modification factor eliciting natural humoral immunity to enveloped viruses, J. Virol. (in press).Google Scholar
  112. Williams, D.A., Lemischka, I.R., Nathan, D.G., and Mulligan. R.C., 1984, Introduction of a new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310:476–480.PubMedGoogle Scholar
  113. Wood, C., Kabat, E.A., Murphy. L.A., and Goldstein, I.J., 1979, Immunochemical studies on the combining sites of two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys. 198:1–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Russell P. Rother
    • 1
  • Uri Galili
    • 2
  1. 1.Molecular Development, Alexion PharmaceuticalsNew HavenUSA
  2. 2.Department of Microbiology and ImmunologyMCP Hahnemann School of MedicinePhiladelphiaUSA

Personalised recommendations