The Griffonia simplicifolia I - B4 Isolectin

A Probe for α-D-Galactosyl End Groups
  • Irwin J. Goldstein
  • Harry G. Winter
Part of the Subcellular Biochemistry book series (SCBI, volume 32)


Lectins are a heterogeneous group of proteins with the common property of recognizing carbohydrate molecules, often in a very specific manner. Although first discovered in plant seeds, they also have been found in other vegetative tissues of the plant world (leaves, stems, bark, roots, tubers, etc.). In recent years, lectins have been isolated from microorganisms, insects, Crustacea, rodents, and most recently from various tissues of primates where they appear to be involved in cellular adhesion, clearance of glycoproteins from the circulating system, cell-cell recognition, etc.


Ehrlich Ascites Tumor Cell Ehrlich Cell Blood Group Substance Griffonia Simplicifolia Zona Pellucida Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bankston, P. W., Porter, G. A., Milici, A. J.,and Palade, G. E., 1991, Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins, Eur. J. Cell Biol. 54: 187–195.PubMedGoogle Scholar
  2. Blake, D. A. and Goldstein, I. J., 1980. Resolution of nucleotide sugars and oligosaccharides by lectin affinity chromatography. Anal. Biochem. 102: 103–109.PubMedCrossRefGoogle Scholar
  3. Blake, D. A. and Goldstein, I. J., 1982. Resolution of carbohydrates by lectin affinity chromatography. Meth. Enzymol. 83: 127–132.PubMedCrossRefGoogle Scholar
  4. Brabec, R. K., Peters, B. P., Bernstein, I. A., Gray. R. H., and Goldstein, I. J., 1980, Differential lectin binding to cellular membranes in the epidermis of the newborn rat, Proc. Natl. Acad. Sci. USA 77: 477–479.PubMedCrossRefGoogle Scholar
  5. Castronovo, V., Colin, C. Parent, B., Foidart, J.-M., Lambotte. R., and Mahieu. P., 1989, Possible role of human natural anti-Gal antibodies in the natural antitumor defense system.J. Nail. Cancer inst. 81:212–216.CrossRefGoogle Scholar
  6. Cho. S. K., and Cummings, R. D., 1997. A soluble form of α-1.3 galactosyltransferase within cells to galactosylate glycoproteins. J. Biol. Chem. 272: 13622–13628.PubMedCrossRefGoogle Scholar
  7. de Boeck, H., Loontiens, F. G., Delmotte, E. M. and de Bruyne, C. K., 1981. The use of 4-methylumbelliferyl glycosides in binding studies with the lectins BS I-A4, BS I-B4 and BS II from Bandeiraea (Griffonia) simplicifolia, FEBS Lett. 126: 227–230.CrossRefGoogle Scholar
  8. Delmotte, F. M. and Goldstein, I. J., 1980. Improved procedure for purification of the Bandeiraea simplicifolia I isolectins and Bandeiraea II lectin by affinity chromatography, Eur. J. Biochem. 112:219–223.PubMedCrossRefGoogle Scholar
  9. Eckhardt, A. E. and Goldstein, I. J. 1983a, Occurrences of α-D-galactosyl-containing glycoproteins on Ehrlich tumor cell membranes. Biochemistry 22: 5280–5289.PubMedCrossRefGoogle Scholar
  10. Eckhardt, A. E. and Goldstein, l. J., 1983b. Isolation and characterization of a family of α-D-galactosyl-containing glycopeptides from Ehrlich ascites tumor cells. Biochemistry 22: 5290–5297.PubMedCrossRefGoogle Scholar
  11. Eckhardt, A. E., Goldstein. I. J., and Nelsestuen. G L. 1985. Bovine prothrombin does not contain α-D-galactopyranosyl groups, Arch. Biochem. Biophys. 169: 635–636.Google Scholar
  12. Eckhardt, A. E., Malone. B. N., and Goldstein, I. J., 1982, Inhibition of Ehrlich ascites tumor cell growth by Griffonia simplicifolia I lectin in vivo. Cancer Res. 42. 2977–2979.PubMedGoogle Scholar
  13. Edge, A. S. B. and Spiro, R. G., 1985, Thyroid cell surface glycoproteins. Nature and deposition of carbohydrate units and evaluation of their blood group I activity, J. Biol. Chem. 260: 1532–1538.Google Scholar
  14. Edge, A. S. B. and Spiro. R. G., 1997, Structure of the O-linked oligosaccharides from a major thyroid cell surface glycoprotem. Arch. Biochem. Biophys. 343(l): 73–80.PubMedCrossRefGoogle Scholar
  15. Faraggiana, T., Churg, J. Grishman, E., Strauss, L., Prado, A., Bishop, D. F., Schuchman, E., and Desnick, R. J., 1982, Light-and electron-microscope histochemistry of Fabry’s Disease. Am. J. Pathol. 103: 247–262.Google Scholar
  16. Faraggiana, T., Crescenze. A., and Marinozzi. V., 1989. Presence of an α-galactolipid on the cell surfaces of endothelial cells of human kidney. Histochem. J. 21: 235–240.PubMedCrossRefGoogle Scholar
  17. Galili, U., 1993, Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans, Immunol. Today 14: 480–482.PubMedCrossRefGoogle Scholar
  18. Galili, U., Clark, M R., Shohet, S. B., Buehler, J., and Macher, B A, 1987, Evolutionary relationship between the natural anti-Gal antibody and the Galα 1,3Gal epitope in primates, Proc. Natl. Acad. Sci. USA 84: 1369–1373.PubMedCrossRefGoogle Scholar
  19. Galili, U., Macher, B A, Buehler, J. and Shohet, S. B., 1985, Human natural anti-α-galactosyl IgG. II. The specific recognition of α-(l→3)-linked galactose residues, J. Exp. Med. 162: 573–582.PubMedCrossRefGoogle Scholar
  20. Galili, U., Shohet, S. B., Kobrin, E., Stults, C. L., and Macher, B. A., 1988, Man, apes, and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263: 17755–17762.PubMedGoogle Scholar
  21. Goldstein, I. J., Blake, D. A., Ebisu, S., Williams, T. J. and Murphy, L. A., 1981, Carbohydrate binding studies on the Bandeiraea simplicifolia I isolectins. Lectins which are mono-, di-, tri-, and tetravalent for N-acetyl-D-galactosamine, J. Biol. Chem. 256: 3890–3893.PubMedGoogle Scholar
  22. Goldstein, I. J., Winter, H. C., and Poretz, R. D., 1997, Plant lectins: tools for the study of complex carbohydrates in: Glycoproteins II, J. Montreuil, J. F. G. Vliegenthart, and H. Schachter, eds., Elsevier, Amsterdam, pp. 403–474.CrossRefGoogle Scholar
  23. Gorelik, E., Duty, L., Anaraki, F.,and Galili, U., 1995, Alteration of cell surface carbohydrates and inhibition of metastatic property of murine melanomas by α-1,3 galactotransferase gene transfection, Cancer Res. 55: 4168–4173.PubMedGoogle Scholar
  24. Hayes, C. E. and Goldstein, I. J., 1974, An α-D-galactosyl-binding lectin from Bandeiraea simplicifolia seeds. Isolation by affinity chromatography and characterization, J. Biol. Chem. 249: 1904–1914.PubMedGoogle Scholar
  25. Hayes, C. E. and Goldstein, I. J., 1975, Equilibrium dialysis and cell binding studies on Bandeiraea simplicifolia lectin, J. Biol. Chem. 250: 6837–6840.PubMedGoogle Scholar
  26. Horejsi, V. and Kocourek, J., 1973, Studies on phytohemagglutinins XII. O-Glycosyl polyacrylamide gels for affinity chromatography of phytohemagglutinins. Biochim. Biophys. Acta. 297: 346–351.PubMedCrossRefGoogle Scholar
  27. Ihida, K., Tsuyama, S., and Murata, F., 1990. The use of Griffonia simplicifolia agglutinin-I B4 in staining the developing rat fundic gland, Acta. Hislochem. Cytochem. 23: 475–86.CrossRefGoogle Scholar
  28. Ito, N., Imai, S., Haga, S., Nagaike, C., Morimura, Y., and Hatake, K., 1996, Localization of binding of Ulex europeus I, Helix pomata and Griffonia simplicifolia I-B4 lectins and analysis of their backbone structures by several glycosidases and poly-N-acetyllactosamine specific lectins in human breast carcinomas, Histochem. Cell Biol. 106: 331–339.PubMedGoogle Scholar
  29. Ito, N., Nagaike, C., Morimura, Y., and Hatake, H., 1997. Estimation and comparison of the content of blood group B antigen in selected human tissues by microphotomeric quantitation of Griffonia simplicifolia agglutinin I-B4 staining with or without prior α-galactosidase treatment, Histol. Histopathol. 12: 415–424.PubMedGoogle Scholar
  30. Kaifu, R., Plantefaber, L. C., and Goldstein, I. J., 1985, 2-substituted methyl α-D-galactopyranosides: synthesis and binding affinity for the A and B subunits of the Griffonia simplicifolia I isolectins, Carbohydr. Res. 140: 37–49.PubMedCrossRefGoogle Scholar
  31. Kusai, K., Yamatnoto, K., Konami, Y., and Osawa. T., 1991, cDNA cloning and expression of Bauhinia purpurea lectin, J. Biochem. (Tokyo) 109: 899–903.Google Scholar
  32. Koite, C., Katayama, A., Kadomatsu, K., Muramatsu, T., Hiraiwa, N., Kannagi, R., Nakashima, I., Yokoyama, I., Takagi, H., 1997, Direct gene replacement of the mouse α(1,3)-galactosyltransferase gene with human α(1,2)-fucosyltransferase gene: converting α-galactosyl epitopes into H antigens, Xenotransplantalion 4: 147–153.CrossRefGoogle Scholar
  33. Knibbs, R. N., Perini, F. and Goldstein, I. J., 1989, Structure of the major concanavalin A-reactiveoligosaccharides of the extracellular matrix component laminin. Biochemistry 28: 6379–6392.PubMedCrossRefGoogle Scholar
  34. Lamb, J. E. and Goldstein, I. J., 1984. A structural comparison of the A and B subunits of Griffonia simplicifolia I isolectins, Arch. Biochem. Biophvs. 229: 15–26.CrossRefGoogle Scholar
  35. Liener, I. E., Sharon, N., and Goldstein, I. J., eds., 1986, The lectins: properties, function and application in biology and medicine, pp. 1–600.Google Scholar
  36. Lis, H., and Sharon, N., 1998, Lectins: carbohydrate specific proteins that mediate cellular recognition, Chem. Rev. in press.Google Scholar
  37. Lönngren, J. and Goldstein, I. J., 1976, Chemical modification studies on the α-D-galactopyranosyl binding lectin from the seeds of Bandeiraea simplicifolia, Biochim. Biophys. Acta. 439: 160–166.CrossRefGoogle Scholar
  38. Lönngren, J., Goldstein, I. J., and Bywater, R., 1976. Cross-linked guaran: a versatile immunosorbent for D-galactopyranosyl-binding lectins, FEBS Lett. 68: 31–34.PubMedCrossRefGoogle Scholar
  39. Lönngren, J., Goldstein, I. J., and Zand, R., 1976. Circular dichroism studies on the α-D-galactopyranosyl binding lectin isolated from the seeds of Bandeiraea simplicifolia, Biochemistry 15: 436–440.Google Scholar
  40. Maddox, D. E., Shibata, S., and Goldstein, I. J., 1982a, Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin, Proc. Natl. Acad. Sci. USA 79: 166–170.PubMedCrossRefGoogle Scholar
  41. Maddox, D. E., Goldstein, I. J., and Lobuglio, A. E., 1982b, Griffonia simplicifolia I lectin mediates macrophage-induced cytotoxicity against Ehrlich ascites tumor, Cell. Immunol. 71:202–207.PubMedCrossRefGoogle Scholar
  42. Mäkelä, O., 1957, Studies on hemagglutinins of Leguminosae seeds, Ann. Med. Exp. Biol. Fenn. 35: Suppl. 11, 1–133.PubMedGoogle Scholar
  43. Mäkelä, O. and Mäkelä, P., 1956, Some new blood groups specific phytoagglutinins, Ann. Med. Exp. Biol. Fenn. 34: 402–404.PubMedGoogle Scholar
  44. Mäkelä, O., Mäkelä, P., and Krüpe. M., 1959, Zur Spezifität der Anti-B-Phythämagglutinine, Z. Immunitasetsforsch. Exp. Ther. 117: 220–229.Google Scholar
  45. Murphy, L. A. and Goldstein. I. J., 1977. Five α-D-galactopyranosyl-binding isolectins from Bandeiraea simplicifolia seeds, J. Biol. Chem. 252: 4739–4742.PubMedGoogle Scholar
  46. Murphy, L. A. and Goldstein. I. J., 1979. Physical-chemical characterization and carbohydrate-binding activity of the A and B subunits of the Bandeiraea simplicifolia I isolectins, Biochemistry 18: 4999–5005.PubMedCrossRefGoogle Scholar
  47. Nelsestuen, G.L. and Sattie, J. W., 1972, The carbohydrate of bovine prothrombin. Partial structural determination demonstrating the presence of α-galactose residues, J. Biol. Chem. 247: 6096–6102.PubMedGoogle Scholar
  48. Okada, Y. and Spiro, R. G., 1980, Isolation and characterization of three major glycoproteins from thyroid plasma membranes, J. Biol. Chem. 255: 8865–8872.PubMedGoogle Scholar
  49. Oppenheim, J. D., Amin, A. R., and Thorbeck, C. J., 1990, A rapid one-step purification procedure for murine igD based on the specific affinity of Bandeiraea (Griffonia) simplicifolia I for N-linked carbohydrates on IgD. J. Immunol. Meth. 130: 243–250.CrossRefGoogle Scholar
  50. Peters, B.P. and Goldstein, l.J.,1979, The use of fluorescein-conjugated Bandeiraea simplicifolia B4 isolectin as a histochemical reagent for the detection of α-D-galactosyl groups, Exp. Cell Res. 120:321–334.PubMedCrossRefGoogle Scholar
  51. Petryniak, J., Varani, J., Ervin, P. R., and Goldstein. I. J., 1991. Differential expression of glycoproteins containing α-D-galactosyl groups on normal human breast epithelial cells and MCF-7 human breast carcinoma cells, Cancer Lett. 60: 59–65.PubMedCrossRefGoogle Scholar
  52. Petryniak, J., Huard, T. K., and Goldstein. I. J., 1992, α-D-Galactose-bearing glycoproteins on the surface of stimulated murine peritoneal macrophages. Biochemical and immunochemical characterization of purified glycoproteins. Eur. J. Biochem. 206: 197–207.PubMedCrossRefGoogle Scholar
  53. Rao, C.N., Goldstein. I. J.,and Liotta, L. A., 1983. Lectin-binding domains on laminin, Arch. Biochem. Biophys. 227: 1 18–124.CrossRefGoogle Scholar
  54. Ross, T. T., Hayes, C. E., and Goldstein. I. J., 1976. Carbohydrate-binding properties of an immobilized α-D-galactopyranosyl binding protein (lectin) from the seeds of Bandeiraea simplicifolia. Carbohydr. Res. 47: 91–97.PubMedCrossRefGoogle Scholar
  55. Roth, J. and Goldstein, I. J., 1995. Subcellular distribution of terminal α-D and β-D galactosyl residues in Ehrlich tumor cells studied by lectin-gold techniques, Glycoconjugate. J. 12: 142–149.CrossRefGoogle Scholar
  56. Shibata, S., Peters, B.P. Roberts, D. D., Goldstein, I. J. and Liotta, L A, 1982, Isolation of laminin by affinity chromatography on Griffonia simplicifolia I lectin, FEBS Letts. 42(2): 194–1CrossRefGoogle Scholar
  57. Shinkel, T. A., Chen, C.-G., Solvaris, E., Henion. T. R., Barlow. H., Galili, U., Pearse, M. J., and D’Apice, A. J. F., 1997, Changes in cell surface glycosylation in α-1,3 galactosyl-transferase knockout and α-1.2-fucosyltransferase transgenic mice. Transplantation 64: 197–204.PubMedCrossRefGoogle Scholar
  58. Tearle, R. G., Tange. M. J., Zannettino. Z. L., Katerelos, M., Shinkel, T. A., Van Denderen. B. J. W., Lonie, A. J., Lyons, I., Nottle, M. B., Cox. T., Becker, C. Peura. A. M., Wigley, P. L., Crawford, R. J., Robins, A. J., Pearse, M. J., and D’Apice. A. J. F., 1996, The α 1,3 galactosyltransferase knockout mouse: Implications for xenotransplantation. Transplantation 61: 13–19.PubMedCrossRefGoogle Scholar
  59. Thall, A. D. and Galili, U., 1990, Distribution of Galα→3Galβ1→4GlcNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay, Biochemistry 29: 3959–3965.PubMedCrossRefGoogle Scholar
  60. Thall, A. D., Maly, P., and Lowe, J. B., 1995, Oocyte gal α 1,3 gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse, J. Biol. Chem. 15: 21437–21440.Google Scholar
  61. Vanhove, B., Goret, F., Soulillou, J.-P., and Pourcel, C., 1997, Porcine α-1,3 galactosyl-transferase: tissue specific and regulated expression of splicing isoforms, Biochim. Biophys. Acta. 1356: 1–11.PubMedCrossRefGoogle Scholar
  62. Watier, H., Guillaumin, J.-M., Piller, F., Lacord, M., Thibault, G., Lebranchu, Y., Monsigny, M., and Bardos, P., 1996, Removal of terminal α-galactosyl residues from xenogenic porcine endothelial cells, Transplantation 62: 105–113.PubMedCrossRefGoogle Scholar
  63. Williams, T. J., Plessas, N. R., and Goldstein, I. J. and Lönngren, J., 1979, A new class of model glycolipids: synthesis, characterization, and interaction with lectins, Arch. Biochem. Biophys. 195: 145–151.PubMedCrossRefGoogle Scholar
  64. Wood, C., Kabat, E. A., Murphy L. A., and Goldstein, I. J., 1979. Immunochemical studies of the combining sites of the two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys. 198: 1–11.PubMedCrossRefGoogle Scholar
  65. Wu, A. M., Song, S.-C., Wu, J. H., and Kabat, E. A., 1995. Affinity of Bandeiraea (Griffonia) simplicifolia lectin I, isolectin B4 for Galα1→4Gal ligand, Biochem. Biophys. Res. Commun. 216:814–820.PubMedCrossRefGoogle Scholar
  66. Young, N.M., and Oomen, R. P., 1992, Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site, J. Mol. Biol. 228: 924–934.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Irwin J. Goldstein
    • 1
  • Harry G. Winter
    • 1
  1. 1.Department of Biological ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations