α-Gal Epitopes in Animal Tissue Glycoproteins and Glycolipids

  • Lennart Rydberg
  • Jan Holgersson
  • Bo E. Samuelsson
  • Michael E. Breimer
Part of the Subcellular Biochemistry book series (SCBI, volume 32)


The great structural complexity of carbohydrate chains originates in the many ways the monosacchrides can be linked to each other. Binding position (e.g., 1,3 as opposed to 1,4), binding anomericity (i.e., a or β), monosaccharide structure (e.g., pentose vs hexose), ring size (i.e., furanose vs pyranose), and stereochemistry all contribute to structural complexity. Furthermore, the carbohydrate chain may be branched or non-branched and the monosaccharide units may be chemically modified through, for example sulfation or phosphorylation. For each linkage established between two monosaccharides, there is an enzyme, a glycosyltransferase, catalyzing the elongation of the growing carbohydrate chain (Natsuka and Lowe, 1994). Sometimes, there are even different glycosyltransferases catalyzing the ases catalyzing the formation of the same linkage. Carbohydrate antigens are therefore “secondary” gene products as they are produced by the joint action of a series of “primary” gene products, the glycosyltransferases. The structural diversity found in the primary sequence of a few monosaccharides is immense compared to the relatively limited structural variability obtained in the primary sequence of the same number of amino acids. If three different amino acids are combined in every possible way, six different polypeptide structures are obtained. If the same theoretical calculation is done with three different monosaccharides, one ends up with more than 1.000 different trisaccharide structures (Samuelsson and Breimer, 1987). However, nature does not, to our knowledge, make use of all these possible structures.


Blood Group Sugar Residue Carbohydrate Chain Rabbit Erythrocyte Porcine Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado, C.G., Cotterell. A.H., McCurry. K.R., Collins. B.H., Magee. J.C., Berthold, J., Logan. J.S. and Platt, J.L., 1995. Variation in the level of xenoantigen expression in porcine organs. Transplantation 59:1589–1596.PubMedGoogle Scholar
  2. Ångström, J., Breimer. M.E., Falk, K.-E., Hansson. G., Karlsson. K.-A., Leffler, H. and Pascher. I., 1982, Structural Characterization of glycolipids of rat small intestine having one to eigth hexoses in a linear sequence. Arch. Biochem. Biophys. 213:708–725.PubMedCrossRefGoogle Scholar
  3. Ariga, T., Yu. R.K., Scarsdale. J.N., Suzuki. M., Kuroda. Y., Kitagawa. H. and Miyatake. T., 1988. Accumulation of a globo-series glycolipid having Galα1–3Gal in PC12h pheochromocytoma cells. Biochemistry. 27:5335–5340.PubMedCrossRefGoogle Scholar
  4. Borén, T., Falk P., Roth, K. A., Larson, G. and Normark, S., 1994. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens, Science 262,:892–1895.Google Scholar
  5. Borrebaeck, C.A.K., Malmborg, A.-C. and Ohlin, M., 1993, Does endogeneous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol. Today, 14:477–479.PubMedCrossRefGoogle Scholar
  6. Bouhours, D., Liaigre, J., Naulet. J., Maume. D. and Bouhours, J.-F., 1997, A novel glycosphingolipid expressed in pig kidney: Galα 1–3Lewis hexaglycosylceramide. Glycoconjugate J. 14:29–38.CrossRefGoogle Scholar
  7. Bouhours, D., Pourcel, C. and Bouhours. J.-F., 1996. Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreative antibodies (Galα1–3Gal), blood group H determinant and N-glycolylneuraminic acid, Glycoconjugate J. 13:1–7.CrossRefGoogle Scholar
  8. Breimer, M.E. and Samuelsson, B.E., 1986. The specific distribution of glycolipid-based blood group A antigens in human kidney related to A1/A2, Lewis, and secretor status of single individuals. Apossible molecular explanation for the successful transplantation of A2 kidneys into O recipients, Transplantation 42:88–91.PubMedGoogle Scholar
  9. Breimer, M.E., Hansson, G.C., Karlsson, K.-A. and Leffler, H., 1982, Glycosphingolipids of rat tissues, J. Biol. Chem. 257:557–568.PubMedGoogle Scholar
  10. Breimer, M.E., Hansson, G.C., Karlsson, K.-A., Larson, G., Leffler, H. and Pimlott, W.,1983, Sequencing of large oligosaccarides by direct inlet mass spectrometry. Application to cell surface glycolipids, Int. J. Mass Spectrom. Ion Phys. 48:113–116.CrossRefGoogle Scholar
  11. Breimer, M.E., Björk, S., Svalander, CT. Bengtsson, A., Rydberg, L., Lie-Svensson, K. Attman, P.O., Aurell, M. and Samuelsson, B.E., 1996, Extracorporeal (“ex vivo”) connection of pig kidneys to dialysis patients. I. Clinical data and studies of platelet destruction. Xenotransplantation 3:328–339.Google Scholar
  12. Bäcker, A.E., Holgersson, J., Samuelsson, B.E. and Karlsson, H., 1998, Identification of extended, Galα1,3Gal-terminated glycosphingolipids in porcine tissues, Glycobiology, 6:000–000.Google Scholar
  13. Chien, J.-L., Li, S.-C. and Li, Y.-T., 1979, Isolation and characterization of a heptaglycosylceramide from bovine erythrocyte membranes, J.Lipid Res. 20:669–673.PubMedGoogle Scholar
  14. Clausen, H. and Hakomori, S., 1989, ABH and related histo-blood group antigens: immunochemical differences in carrier isotypes and their distribution, Vox. Sang. 56:1–20.PubMedCrossRefGoogle Scholar
  15. Dabrowski, J., Dabrowski, U., Beimel, W., Kordowicz. M. and Hanfland, P., 1988, Structure elucidation of the blood group B like and blood group I active octaantennary ceramide tetracontasaccharide from rabbit erythrocyte membranes by two-dimensional 1H-NMR Spectroscopy at 600 MHz. Biochemistry 27:5149–5155.PubMedCrossRefGoogle Scholar
  16. Dabrowski, U., Hanfland, P., Egge, H., Kuhn. S. and Dabrowski, J., 1984, Immunochemistry of I/i-Active Oligo-and Polyglycosylceramides from rabbit erythrocyte membranes, J. Biol. Chem. 259:7648–7651.PubMedGoogle Scholar
  17. Dharmesh, S.M. and Baenziger, J.U., 1993, Estrogen modulates expression of the glycosyltransferases that synthesize sulfated oligosaccharides on lutropin, Proc. Natl. Acad. Sci. USA 90:11127–11131.PubMedCrossRefGoogle Scholar
  18. Edge, A.S.B. and Spiro, R.G., 1985, Thyroid cell surface glycoproteins. Nature and disposition of carbohydrate units and evaluation of their blood group I activity, J. Biol. Chem. 260: 15332–15338.PubMedGoogle Scholar
  19. Edge, A.S.B. and Spiro, R.G., 1997, Structure of the O-linked oligosaccharides from a major thyroid cell surface glycoprotein, Arch. Biochem. Biophys. 343:73–80.PubMedCrossRefGoogle Scholar
  20. Egge, H., Kordowicz, M., Peter-Katalinic, J. and Hanfland. P., 1985, Immunochemistry of 1/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes, J. Biol. Chem. 260:4927–4935.PubMedGoogle Scholar
  21. Endo, T., Wright, A., Morrison, S.L. and Kobata, A., 1995, Glycosylation of the variable region of immunoglobulin G — site specific maturation of the sugar chains, Mol. Immunol. 32:931–940.PubMedCrossRefGoogle Scholar
  22. Eto, T., Ichikawa, Y., Nishimura, K., Ando, S. and Yamakawa. T., 1968, Chemistry of lipid of the posthemolytic residue or stroma of erythrocytes, J.Biochem. 64:205–213.PubMedGoogle Scholar
  23. Falk, P., Roth, K.A., Borén, T., Westblom, T.U., Gordon, J.I. and Normark, S., 1993, An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium, Proc. Natl. Acad. Sci. USA 90:2035–2039.PubMedCrossRefGoogle Scholar
  24. Galili, U., 1993, Interaction of the natural anti-gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans, Immunol. Today 14:480–482.PubMedCrossRefGoogle Scholar
  25. Galili, U., LaTemple, D.C. and Radic, M.Z., 1998, A sensitive assay for measuring α-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation 65:1129–1132.PubMedCrossRefGoogle Scholar
  26. Galili, U., Buchler, J., Shohet, S.B. and Macher, B.A., 1987, The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies, J. Exp. Med. 165:693–704.PubMedCrossRefGoogle Scholar
  27. Galili, U., Mandrell, R.E., Hamadeh, R.M., Shohet, S.B. and Griffiss, J.M., 1988, Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora, Infect. Immun. 56:1730–1737.PubMedGoogle Scholar
  28. Galili, U., Basbaum, C.B., Shohet, S.B., Buehler, J. and Macher, B.A., 1987, Identification of Erythrocyte Galα1–3Gal glycosphingolipids with a mouse monoclonal antibody, Gal-13, J. Biol. Chem. 262:4683–688.PubMedGoogle Scholar
  29. Galili, U., Shohet, S.B. Kobrin, E., Stults, C.L. and Macher, B.A., 1988, Man, apes and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263:17755–17762.PubMedGoogle Scholar
  30. Good, A.H., Cooper, D.K.C., Malcolm, A.J., lppolito, R.M., Koren, E., Neethling. F.A., Ye, Y., Zudhi, N. and Lamontagne, L.R., 1992. Identification of carbohydrate structures that bind human anti-porcine antibodies: Implications for discordant xenografting in humans, Transplantation Proc. 24:559–562.Google Scholar
  31. Gray, G.M., 1971, The effect of testosterone on the biosynthesis of the neutral glycosphingolipids in the C57/BL mouse kidney, Biochim. Biophys. Acta 239:494–500.PubMedCrossRefGoogle Scholar
  32. Hakomori, S., 1990, Biochemical basis of tumor-associated carbohydrate Antigens. Current trends, future perspectives, and clinical applications. Immunology and Allergy Clinics of North America. 10:781–802.Google Scholar
  33. Hakomori, S., 1994, Role of carbohydrates in cell adhesion and recognition. In: Complex carbohydrates in drug research. Alfred Benzon Symposium 36 (K. Bock and H. Clausen, eds.), pp. 337–349, Munksgaard. Copenhagen.Google Scholar
  34. Hallberg, E.C., Holgersson. J. and Samuelsson, B.E., 1998a. Glycosphingolipid expression in pig aorta: identification of possible target antigens for human natural antibodies. Glycobiology 8:000–000CrossRefGoogle Scholar
  35. Hallberg, E.C., Strokan. V., Cairns, T.D.H., Breimer. M.E. and Samuelsson, B.E., 1998b Chemical and immune electron microscopical studies of the expression of the Galα 1-determinant in the pig aorta, Xenotransplantation, in press.Google Scholar
  36. Hamadeh, R.M., Jarvis, G.A., Galili, U., Mandrell. R.E., Zhou. P. and Griffiss. J.M., 1992. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces, J. Clin. Invest.,89:1223–1235.PubMedCrossRefGoogle Scholar
  37. Hanfland, P., Egge, H., Dabrowski. U. Kuhn. S. Roelcke. D. and Dabrowski. J., 1981. Isolation and characterization of an I-Active ceramide decasaccharide from rabbit erythrocyte membranes. Biochemistry 20:5310–5319.PubMedCrossRefGoogle Scholar
  38. Hansson, G.C., 1988, A blood group B-like pentaglycosylceramide is the major complex glycospingolipid of the Madin-Darby canine kidney epithelial cell line 1 (MDCK I), Biochim. Biophys. Acta 967:87–91.PubMedCrossRefGoogle Scholar
  39. Hart, G.W., 1997, Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins, Annu. Rev. Biochem. 66:315–335.PubMedCrossRefGoogle Scholar
  40. Hay, J.B. and Gray, G.M., 1970. The effect of testosterone on the glycosphingolipid composition of mouse kidney, Biochim. Biophys. Acta 202:566–568.CrossRefGoogle Scholar
  41. Hayes, B.K. and Hart, G.W., 1994 Novel forms of protein glycosylation, Curr: Opin. Struct. Biol. 4: 692–696.CrossRefGoogle Scholar
  42. Hendricks, S.A., Pingren. H., Stults, C.L.M. and Macher. B.A., 1990. Regulation of the expression of Galα1–3Galβ1–4GlcNAc glycosphingolipids in kidney. J. Biol. Chem. 265:17621–17626.PubMedGoogle Scholar
  43. Hironaka, T., Furukawa. K., Esmon. P.C., Yokota. T., Brown. J.E., Sawada. S., Foumel. M.A., Kato M., Minaga T. and Kobata A., 1993. Structural study of the sugar chains of porcine factor VIII — tissue-and species-specific glycosylation of factor VIII., Arch. Biochem. Biophys. 307:316–330.PubMedCrossRefGoogle Scholar
  44. Holgersson, J., Breimer. M.E. and Samuelsson, B.E., 1992. Basic biochemistry of cell surface carbohydrates and aspects of the tissue distribution of histo-blood group ABH and related glycosphingolipids. APM1S Suppl. 27 100:18–27.Google Scholar
  45. Honma, K., Manabe, H., Tomita, M. and Hamada, A., 1981, Isolation and partial structural characterization of macroglycolipid from rabbit erythrocyte membranes, J. Biochem. 90:1187–1196.PubMedGoogle Scholar
  46. Höök, M., Kjellén, L., Johansson, S. and Robinson, J., 1984, Cell-surface glycosaminoglycans, Annu. Rev. Biochem. 53:847–869.PubMedCrossRefGoogle Scholar
  47. Iwase, H., 1988, Variety and microheterogeneity in the carbohydrate chains of glycoproteins, Int. J. Biochem. 20:479–491.PubMedCrossRefGoogle Scholar
  48. Jalali-Araghi, K. and Macher, B.A., 1994, Characterization of porcine kidney neutral glycosphingolipids: identification of a carbohydrate antigen recognized by human natural antibodies, Glycoconjugate J. 11:266–271.CrossRefGoogle Scholar
  49. Jentoft, N., 1990, Why are proteins O-glycosylated? Trends Biochem. Sci. 15:291–294.PubMedCrossRefGoogle Scholar
  50. Kagawa, Y., Takasaki, S., Utsumi, J., Hosoi, K., Shimizu, H., Kochibe, N. and Kobata, A., 1988, Comparative study of the asparagine-linked sugar chains of natural human interferon-β 1 and recombinant human interferon-β 1 produced by three different mammalian cells, J. Biol. Chem. 263:17508–17515.PubMedGoogle Scholar
  51. Karlsson, K.-A., 1995, Microbial recognition of target-cell glycoconjugates, Curr. Opin. Struct. Biol. 5:622–635.PubMedCrossRefGoogle Scholar
  52. Knibbs, R.N., Perini, F. and Goldstein, I.J., 1989, Structure of the major Concanavalin A reactive oligosaccharides of the extracellular matrix component laminin. Biochemistry 28:6379–6392.PubMedCrossRefGoogle Scholar
  53. Kornfeld, R. and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54:631–664.PubMedCrossRefGoogle Scholar
  54. Krotkiewski, H., Grönberg, G., Krotkiewska, B., Nilsson, B. and Svensson, S., 1989, Heterogeneity in the sugar moieties of glycoproteins: Structures of the oligosaccharides of a mouse monoclonal antibody OKT3, in: Xth International Symposium on Glycoconjugates (N. Sharon, H. Lis, D. Duksin and I. Kahane, eds.). Jerusalem. Israel.Google Scholar
  55. Krotkiewski, H., Grönberg, G., Krotkiewska, B., Nilsson, B. and Svensson, S., 1990, The carbohydrate structures of a mouse monoclonal IgG antibody OKT3. J. Biol. Chem. 265:20195–20201.PubMedGoogle Scholar
  56. Landsteiner, K., 1945, The specificity of serological reactions. 2nd Ed., Harvard University Press, Cambridge.Google Scholar
  57. Lipniunas, P., Grönberg, G., Krotkiewski, H., Angel A.S. and Nilsson B., 1993. Investigation of the structural heterogeneity in the carbohydrate portion of a mouse monoclonal immunoglobulin A antibody, Arch. Biochem. Biophys. 300:335–345.PubMedCrossRefGoogle Scholar
  58. Liu, J., Qian, Y. and Holgersson, J., 1997, Removal of xenoreactive human anti-pig antibodies by absorption on recombinant mucin-containing glycoproteins carrying the Galα1,3Gal epitope. Transplantation, 63, 1673–1682.PubMedCrossRefGoogle Scholar
  59. Natsuka, S. and Lowe, J.B., 1994, Enzymes involved in mammalian oligosaccharide biosynthesis, Curr. Opin. Struct. Biol. 4:683–691.CrossRefGoogle Scholar
  60. Neethling, F.A., Koren,, E., Ye Y., Richards S.V., Kujundzic, M., Oriol, R. and Cooper, D.K.C., 1994, Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by α-galactosyl oligosaccharides, Transplantation 57:959–963.PubMedCrossRefGoogle Scholar
  61. Oriol, R., Mollicone, R., Coullin, P., Dalix. A.-M. and Candelier, J.-J., 1992, Genetic regulation of the expression of ABH and Lewis antigens in tissues, APMIS Suppl.27, 100: 28–38.Google Scholar
  62. Oriol, R., Ye, Y., Koren, E. and Cooper, D.K., 1993, Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 56:433–42.CrossRefGoogle Scholar
  63. Peters, B.P. and Goldstein, I.J., 1979, The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of α-D-galactopyranosyl groups, Exp. Cell Res. 120:321–334PubMedCrossRefGoogle Scholar
  64. Postigo, A.A., Marazuela, M., Sánchez-Madrid, F. and de Landázuri M.O., 1994, B lymphocyte binding to E-and P-selectins is mediated through the de novo expression of carbohydrates on in vitro and in vivo activated human B cells. J. Clin. Invest. 94:1585–1596.PubMedCrossRefGoogle Scholar
  65. Rydberg, L., Björck. S., Hallberg, E., Magnusson. S. Strokan. V., Svalander. CT., Samuelsson, B.E. and Breimer. M.E., 1996. Extracorporeal (“ex vivo”) connection of pig kidneys to humans. II. The anti-pig’ antibody response. Xenotransplantation 3:340–353.CrossRefGoogle Scholar
  66. Samuelsson. B.E. and Breimer. M.E., 1997. ABH antigens: Some basic aspects. Transplantation Proc. 19:4401–4407.Google Scholar
  67. Samuelsson. B.E., Rydberg, L., Breimer. M.E., Bäcker. A., Gustavsson. M., Holgersson. J., Karlsson, E., Uyterwaal. A.-C. Cairns. T. and Welsh. K., 1994. Natural Antibodies and Human Xenotransplantation. Immunol. Rev. 141:151–168.PubMedCrossRefGoogle Scholar
  68. Sandrin, M.S., Vaughan. H.A., Dabkowski. P.L. and McKenzie. I.F.C., 1993. Anti-pig IgM antibodies in human serum react predominantly with gal(α1–3)gal epitopes, Proc. Natl. Acud. Sci. USA 90:11391–11395.CrossRefGoogle Scholar
  69. Shibata, S., Peters, B.P., Roberts. D.D., Goldstein, I.J. and Liotta. L.A., 1982. Isolation of laminin by affinity chromatography on immobilized Griffonia simplicifolia I lectin. FEBS Lett. 142:194–198.Google Scholar
  70. Spiro, R.G. and Bhoyroo, V.D., 1984. Occurence of α-D-galactosyl residues in the thyroglobulins from several species. Localization in the saccharide chains of the complex carbohydrate units. J. Biol. Chem. 259:9858–9866.PubMedGoogle Scholar
  71. Stellner. K., Saito, H. and Hakomori. S.I., 1973. Determination of aminosugar linkage in glycolipids by methylation. Aminosugar linkage of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch. Biochem. Biophys. 155:464–472.PubMedCrossRefGoogle Scholar
  72. Strokan, V., Rydberg, L., Hallberg, E.C., Moine, J. and Breimer M.E., 1998a. Characterisation of human natural anti-sheep xenoantibodies, Xenotransplantalion 5:111–121.CrossRefGoogle Scholar
  73. Strokan, V., Mölne, J., Svalander, C. and Breimer. M.E., 1998b, Hetergeneous expressioin of Galα 1–3Gal xenoantigen in pig kidney. A lectin-and immunogold ecelctron microscopic study, Transplantation, accepted.Google Scholar
  74. Suzuki, E. and Naiki, M., 1984. Heterophile antibodies to rabbit erythrocytes in human sera and identification of the antigen as a glycolipid. J. Biochem. 95:103–108.PubMedGoogle Scholar
  75. Teneberg. S., Lönnroth. I., Torres Lopez. J.F., Galili. U., Ölwegård Halvarsson. M., Ångström, J. and Karlsson. K.-A., 1996. Molecular mimicry in the recognition of glycosphingolipids by Galα3Galβ4GlcNAcβ-binding Clostridium difficile toxin A. human natural anti α-galatosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology 6:599–609.PubMedCrossRefGoogle Scholar
  76. Thall, A. and Galili, U., 1990, Distribution of Galα 1–3Galβ 1–4GlcNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry, 29:3959–3965.PubMedCrossRefGoogle Scholar
  77. Uemura, K., Yuzuwa, M. and Taketomi. T., 1978, Characterization of major glycolipids in bovine erythrocyte membrane, J. Biochem. 83:463–471.PubMedGoogle Scholar
  78. Ulfvin, A., Bäcker, A.E., Clausen, H., Hakomori, S., Rydberg, L., Samuelsson, B.E. and Breimer. M.E., 1993, Expression of glycolipid blood group antigens in single human kidneys. Change in antigen expression of rejected ABO incompatible kidney grafts. Kidney Int. 44:1289–1297.PubMedCrossRefGoogle Scholar
  79. von Düngern. E and Hirszfeld, L., 1911. Ueber Gruppenspezifishe Strukturen des Blutes. Z. Immunitätsforsch. 8:526–562.Google Scholar
  80. Wang X., O’Hanlon T.P. and Lau J.T.Y.,1989, Regulation of β-galactoside a2,6-sialyltransferase gene expression by dexamethasone. J. Biol. Chem. 264:1854–1859.PubMedGoogle Scholar
  81. Wang, X.C., Smith, T.J. and Lau, J.T.Y., 1990. Transcriptional regulation of the liver β-galactoside a2,6-sialyltransferase by glucocorticoids. J. Biol. Chem. 265:17849–17853.PubMedGoogle Scholar
  82. Watanabe, K., Hakamori, S., Childs, R.A. and Feizi, T., 1979, Characterization of a blood Group 1-active ganglioside, J Biol Chem. 254:3221–3228.PubMedGoogle Scholar
  83. Welsh, K.I., Taube, D.H., Thick, M., Palmer, A., Stevens, N. and Binns, R.,1991, Human antibodies to pig determinants and their association with hyperacute rejection of xenografts, Chapter 31 inGoogle Scholar
  84. Xenotransplantation (D.K.C Cooper, K. Reemtsma and D.J.G. White, eds.), pp.501–510, Springer-Verlag, HeidelbergGoogle Scholar
  85. Yamakawa, T., Matsumoto, M. and Suzuki, S., 1956, The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. VIII. The nature of hexosamine and fatty acids of blood cells sphingolipids, J.Biochem. 43:63–72.Google Scholar
  86. Yamakawa, T., Irie, R. and Iwanaga, M., 1960, The chemistry of lipid of posthemolytic residue or stroma of erythrocytes. IX. Silicic acid chromatography of mammalian stroma glycolipids, J. Biochem 48:490–507.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Lennart Rydberg
    • 1
  • Jan Holgersson
    • 2
  • Bo E. Samuelsson
    • 1
  • Michael E. Breimer
    • 3
  1. 1.Institute of Laboratory Medicine, Department of Clinical Chemistry and Transfusion MedicineSahlgrenska universitetssjukhusetSweden
  2. 2.Division of Clinical Immunology, Karolinska InstituteHuddinge University HospitalHuddingeSweden
  3. 3.Institute for Surgical Sciences, Department of SurgeryUniversity of Göteborg, Sahlgrenska universitetssjukhusetGöteborgSweden

Personalised recommendations