The Natural Anti-Gal Antibody

  • Uri Galili
  • Le Wang
  • Denise C. LaTemple
  • Marko Z. Radic
Part of the Subcellular Biochemistry book series (SCBI, volume 32)


Anti-Gal is the most abundant antibody found in humans. It constitutes 1 % of circulating antibodies and interacts specifically with the α-gal epitope (Galα1-3Galβl-4GlcNAc-R). This chapter describes the studies which have red to the identification of the unique specificity of this antibody, the mechanisms inducing production of this antibody and regulating its affinity, the genes encoding this antibody, and the effects of immune tolerance on anti-Gal specificity. Understanding the various aspects of anti-Gal activity in humans and in mice that lack α-gal epitopes (i.e. knock-out mice for α-galactosyltransferase) provides paradigms for a general understanding of anti-carbohydrate immune response.


Blood Group Carbohydrate Structure Carbohydrate Chain Human Blood Group Normal Human Seron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, I.C., Milani, S.R., Gorin, A.J., and Travassos, L.R., 1991, Complement mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-α-galactosyl antibodies. J. Immunol. 146:2394–2401.PubMedGoogle Scholar
  2. Arumugham, R.G., Hsieh, T.C.Y., Tanzer, M.L., and Laine, R.A., 1986, Structures of the asparagine-linked sugar chains of laminin. Biochem. Biophys. Acta 883:112–126.PubMedCrossRefGoogle Scholar
  3. Björndal, H., Lindberg, B., and Nimmich, W., 1971, Structural studies on Klebsiella O group 1 and 6 lipopolysaccharides. Acta Chem. Scand. 25:750–762.PubMedCrossRefGoogle Scholar
  4. Buehler, J., Galili, U., and Macher, B.A., 1987, Use of enzyme-linked immunoadsorbent assay to monitor the purification of glycosphingolipid antigens by high-performance liquid chromatogrα-phy. Anal. Biochem. 164:521–525.PubMedCrossRefGoogle Scholar
  5. Castronovo, V., Parent, B., Steeg, P.S., Colin, C., Foidart, J.M., Lambotte, R., and Mahieu, P., 1989, Human natural anti-Gal antibodies may play a role in the natural anti-tumor defense system. J. Natl. Cancer lust. 81:212–216.CrossRefGoogle Scholar
  6. Curval, M., Linberg, B., Löngren, J., Ruden, U., and Nimmich, W., 1973, Structural studies on the Klebsiella O group 8 lipopolysaccharides. Acta Chem. Scand. 27:4019–4028.CrossRefGoogle Scholar
  7. Davin. J.C., Malaise, M., Foidart, J.M., and Mahieu, P., 1987, Anti-α-galactosyl antibodies and immune complexes in children with Henoch-Schönlein purpura of lgA nephropathy. Kidney Int. 31:1132–1139.PubMedCrossRefGoogle Scholar
  8. Eto, T., Iichikawa, Y., Nishimura, K., Ando, S., and Yamakawa, T., 1968, Chemistry of lipids of the posthemolytic residue or stroma of erythrocytes. XVI. Occurance of ceramide pentasaccharide in the membrane of erythrocytes and reticulocytes in rabbit.J. Biochem. (Tokyo) 64:205–213.Google Scholar
  9. Gabrielli, A., Candel, M., Ricciatti, A.M., Caniglia. M.L., and Wieslander, J., 1991, Antibodies to mouse laminin in patients with systemic sclerosis (scleroderma) recognize galactose (α1,3)-galactose epitopes. Clin. Exp. Immunol. 86:367–373.PubMedCrossRefGoogle Scholar
  10. Gabrielli, A., Leoni, P., Danielli, G., Herrmann, K., Krieg, T., and Wieslander, J., 1991, Antibodies against galactosyl α( 1-3)galactose in connective tissue disease. Arthritis Rheum. 34:375–376.PubMedCrossRefGoogle Scholar
  11. Galili, U., 1988a, The natural anti-Gal antibody, the B-like antigen, and human red cell aging. Blood Cells 14:205–220.PubMedGoogle Scholar
  12. Galili, U., 1988b, The two antibody specificities within human anti-blood group B antibodies. Transfusion Med. Rev. 2:112–121.CrossRefGoogle Scholar
  13. Galili, U., 1993a, Evolution and pathophysiology of the human natural anti-Gal antibody. Springer Seminars in Immunopathology 15:155–171.PubMedCrossRefGoogle Scholar
  14. Galili, U., 1993b, Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: A major obstacle for xenotransplantation in humans. Immunology Today 14:480–482.PubMedCrossRefGoogle Scholar
  15. Galili, U., Anaraki, F., Thall, A., Hill-Black, C., and Radic, M., 1993, One percent of circulating B lymphocytes are capable of producing the natural anti-Gal antibody. Blood 82:2485–2493.PubMedGoogle Scholar
  16. Galili, U., Basbaum, C., Shohet, S.B., Buehler, J., and Macher, B.A., 1987b, Identification of erythrocyte Galα1–3Gal glycosphingolipids with a mouse monoclonal antibody Gal-13. J. Biol. Chem. 262:4683–688.PubMedGoogle Scholar
  17. Galili, U., Buehler, J., Shohet, S.B., and Macher. B.A., 1987a, The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J. Exp. Med. 165:693–704.PubMedCrossRefGoogle Scholar
  18. Galili, U., Clark, M.R., and Shohet, S.B., 1986b, Excessive binding of the natural anti-α-galactosyl IgG to sickle red cells may contribute to extravascular cell destruction. J. Clin. Invest. 77:27–33.PubMedCrossRefGoogle Scholar
  19. Galili, U., Clark, M.R., Shohet, S.B., Buehler, J., and Macher, B.A., 1987b, Evolutionary relationship between the anti-Gal antibody and the Galα1–3Gal epitope in primates. Proc. Natl. Acad. Sci USA)84:1369–1373.PubMedCrossRefGoogle Scholar
  20. Galili, U., Flechner, I., Kniszinski, A., Danon, D., and Rachmilewitz. E.A., 1986a, The natural anti-α-galactosyl lgG on human normal senescent red blood cells. Br. J. Haematol. 62:317–324.PubMedCrossRefGoogle Scholar
  21. Galili, U., Korkesh, A., Kahane, I., and Rachmilewitz, E.A., 1983. Demonstration of a natural anti-galactosyl IgG antibody on thalassemic red blood cells. Blood 61:1258–1264.PubMedGoogle Scholar
  22. Galili, U. and LaTemple, D.C., 1997, The natural anti-Gal antibody as a universal augmenter of autologous vaccine immunogenicity. Immunology Today 18:281–285.PubMedCrossRefGoogle Scholar
  23. Galili, U., LaTemple, D.C., and Radic, M.Z., 1998, A sensitive assay for measuring α-gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation 65:1129–1132.PubMedCrossRefGoogle Scholar
  24. Galili, U., LaTemple, D.C., Walgenbach, A.W., and Stone, K.R., 1997a. Porcine and bovine cartilage transplants in cynomolgus monkey: II. Changes in anti-Gal response during chronic rejection. Transplantation 63:646–651.PubMedCrossRefGoogle Scholar
  25. Galili, U., Macher, B.A., Buehler, J., and Shohet, S.B., 1985. Human natural anti-α-galactosyl IgG. II. The specific recognition of a( 1-3)-linked galactose residues. J. Exp. Med. 162:573–582.PubMedCrossRefGoogle Scholar
  26. Galili, U., Mandrell. R.E., Hamahdeh. R.M., Shohet, SB., and Griffis. J.M., 1988. Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56:1730–1737.PubMedGoogle Scholar
  27. Galili, U. and Matta, K.L., 1996, Inhibition of anti-Gal IgG binding to porcine endothelial cells by synthetic oligosaccharides. Transplantation 62:356–262.CrossRefGoogle Scholar
  28. Galili, U., Minanov, O., Michler, R.E., and Stone, K.R., 1997b, High affinity anti-Gal IgG in chronic rejection of xenografts. Xenotransplantation 4:127–131.CrossRefGoogle Scholar
  29. Galili, U., Rachmilewitz, E.A., Peleg, A., and Flechner, I., 1984, A unique natural human IgG antibody with anti-α-galactosyl specificity. J. Exp. Med. 160:1519–1531.PubMedCrossRefGoogle Scholar
  30. Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., and Groth, C.G., 1995. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 59:1549–1556.PubMedGoogle Scholar
  31. Gerwig, G.S., deWaard, P., Kamerling. J.P., Vliegenthart. J.F.G., Morgenstern, E., Lamed, R., and Bayer. E.A., 1989. Novel O-linked carbohydrate chains in the cellulase complex Cellulosome of Clostridium thermocellum. J. Biol. Chem. 264:1027–1035.PubMedGoogle Scholar
  32. Good, A.H., Cooper, D.C.K., Malcolm, A.J., lppolito. R.M., Koren, E., Neethling, F.A., Ye, Y., Zuhdi, N., and Lamontage. L.R., 1992. Identification of carbohydrate structures which bind human anti-porcine antibodies: implication for discordant xenografting in man. Transplant. Proc. 24:559–562.PubMedGoogle Scholar
  33. Groth, C.G., Korsgren, O., Tibell, A., Tollerman, J., Möller, E., Bolinder, J., Ostman, J., Reinholt, F.P., Hellerstrom, C., and Andersson, A., 1994. Transplantation of fetal porcine pancreas to diabetic patients: biochemical and histological evidence for graft survival. Lancet 344:1402–1404.PubMedCrossRefGoogle Scholar
  34. Guilbert, B., Dighiero. G., and Avrameas, S., 1982, Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 128:2779–2790.PubMedGoogle Scholar
  35. Hamadeh, R.M., Galili. U., Zhou, P., and Griffis, J.M., 1995, Human secretions contain IgA. IgG and IgM anti-Gal (anti-α-galactosyl) antibodies. Clin. Diagnos. Lab. Immunol. 2:125–131.Google Scholar
  36. Hamadeh, R.M., Jarvis, G.A., Galili, U., Mandrell, R.E., Zhou, P., and Griffiss. J.M., 1992, Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J. Clin. Invest. 89:1223–1235.PubMedCrossRefGoogle Scholar
  37. Jann, K., and Jann, B., 1984. Structure and biosynthesis of O-antigens. In: Riestcel, E.T. (ed). Handbook of endotoxins, vol l. Chemistry of endotoxins. Elsevier, Amsterdam, p. 138.Google Scholar
  38. Jansson, P.E., Lindberg, A.A., Lindberg, B.and Wollin. R., 1981. Structural studies on the hexose region of the core lipopolysaccharides from Enterobacteriaceae. Eur. J. Biochem. 115:571–577.PubMedCrossRefGoogle Scholar
  39. Kabat, E.A., 1976, Structural concepts in immunology and immunochemistry (2nd Ed). Hold, Rinehart & Winston. New York. 174–189.Google Scholar
  40. Kozlowski, T., lerino, F., Lambrigts, D., Foley, A., Andrews, D., Awwad, M., Monroy, R., Cosimi, A.B., Cooper, D.K.C., and Sachs, D.H., 1998, Depletion of anti-Galα1–3Gal antibody in baboons by specific α-gal immunoaffinity columns. Xenotransplantation 5:122–131.PubMedCrossRefGoogle Scholar
  41. Landsteiner, K., and Philip-Miller, C., 1925, Serological studies on the blood of the primates. III. Distribution of serological factors related to human isoagglutinations in the blood of lower monkeys. J. Exp. Med. 42:863–875.PubMedCrossRefGoogle Scholar
  42. LaTemple, D.C., and Galili, U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α-galactosyltransferase. Xenotransplantation 1998, in press.Google Scholar
  43. LaTemple, D.C., Henion, T.R., Anaraki, F., and Galili, U., 1996, Synthesis of α-galactosyl epitopes by recombinant α 1,3galactosyltransferase for opsonization of human tumor cell vaccines by anti-Gal. Cancer Research 56:3069–3074.Google Scholar
  44. Lüderitz, O., Simmons, D.A.R., and Westphal, O., 1965. The immunochemistry of Salmonella chemotype VI O-antigen. The structure of oligosaccharides from Salmonella group U 043 lipopolysaccharides. Biochem. J. 97:820–832.PubMedGoogle Scholar
  45. Lutz, H.U., Flepp, R., and Stringnaro-Wipf, G., 1984, Naturally occurring antibodies to exoplasmic and cryptic regions of band 3 protein, the major integral protein of human red blood cells. J. Immunol. 133:2610–2618.PubMedGoogle Scholar
  46. Magnani, J.L., Brockhaus, M., Smith, D.F., Ginsburg, V., Blaszczyk, M., Mitchell, K.F., Steplewski, Z., and Koprowski, H., 1981, A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma. Science 212:55–56.PubMedCrossRefGoogle Scholar
  47. McMorrow, I.M., Comrack, C.A., Nazarey, P.P., Sachs. D.H., and DerSimonian, H., 1997, Relationship between ABO blood group and levels of αGal 1,3galactose-reactive human immunoglobulin G. Transplantation 64:546–549.PubMedCrossRefGoogle Scholar
  48. Minanov, O.P., Itescu, S., Neethling, F.A., Morgenthau, A.S., Kwiatkowski, P., Cooper, D.K.C, and Michler, R.E., 1997, Anti-Gal IgG antibodies in sera of newborn humans and baboons and its significance in pig xenotransplantation. Transplantation 63:182–186.PubMedCrossRefGoogle Scholar
  49. Parker, W., Bruno, D., Holzknecht, Z.E., and Platt, J.L., 1994, Characterization and affinity isolation of xenoreactive human natural antibodies. J. Immunol. 153:3791–803.PubMedGoogle Scholar
  50. Ravindran, S., Satapathy, A.K., and Das, M.K., 1988, Naturally occurring anti-α-galactosyl antibodies in human Plasmodium falciparum infections: a possible role for autoantibodies in malaria. Immunol. Lett. 19:137–142.PubMedCrossRefGoogle Scholar
  51. Sandrin, M., Vaughan, H.A., Dabkowski, P.L., and McKenzie, I.F.C., 1993, Anti-pig IgM antibodies in human serum react predominantly with Galα1–3Gal epitopes. Proc. Natl. Acad. Sci. USA 90:11391–11395.PubMedCrossRefGoogle Scholar
  52. Sandrin, M.S., Vaughan, H.A., Xing, P-X., and McKenzie, I.F.C., 1997, Natural human anti-Galα(1,3)Gal antibodies react with human mucine peptides. Glycoconjugates J. 14:97–105.CrossRefGoogle Scholar
  53. Satake, M., Kawagishi, N., Rydberg, L., Samuelsson. B.E., Tibell, A., Groth. C.G., and Möller, E., 1994, Limited specificity of xenoantibodies in diabetic patients transplanted with fetal porcine islet cell clusters. Main antibody reactivity against α-linked galactose-containing epitopes. Xenotransplantation 1:89–101.CrossRefGoogle Scholar
  54. Shibata, S., Peters, B.P., Roberts, D.D., Goldstein, T.J., and Liotta, L.A., 1982, Isolation of laminin by affinity chromatography on immobilized Griffonia simplicifolia I lectin. FEBS Lett. 142:194–197.CrossRefGoogle Scholar
  55. Shinkel, T.A., Chen, C.G., Salvaris, E., Henion, T.R., Barlow, H., Galili, U., Pearse, M.J., and d’Apice, A.J., 1997, Changes in cell surface glycosylation in α-galactosyltransferase knock-out and α1,2-fucosyltransferase transgenic mice. Transplantation 95:574–579.Google Scholar
  56. Socha, W.W., and Ruffie, J., 1983, Blood groups of primates: Theory, practice, evolutionary meaning. Liss. New York, 39–51.Google Scholar
  57. Spiro, R.G., and Bhoyroo, V.D., 1984, Occurance of α-D-galactosyl residues in the thyroglobulin from several species. Localization in the saccharide chains of the complex carbohydrate units. J. Biol. Chem. 259:9858–9866.PubMedGoogle Scholar
  58. Springer, G.F., 1971, Blood-group and Forssman antigenic determinants shared between microbes and mammalian cells. Prog. Allergy 15:9–77.PubMedCrossRefGoogle Scholar
  59. Springer, G.F., and Horton, R.E., 1969. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Invest. 48:1280–1291.PubMedCrossRefGoogle Scholar
  60. Stellner. K., Saito. H., and Hakomori. S., 1973. Determination of aminosugar linkage in glycolipids by methylation. Aminosugar linkage of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch. Biochem. Biophys. 133:464–472.CrossRefGoogle Scholar
  61. Stone, K.R., Ayala. G., Goldstein, J., Hurst. R., Walgenbach, A., and Galili. U., 1998. Porcine cartilage transplants in cynomolgus monkey: III. Transplantation of α-galactosidase treated porcine cartilage. Transplantation 65:1577–1583.PubMedCrossRefGoogle Scholar
  62. Stone, K.R., Walgenbach, A. W., Abrams. T., Nelson. J., Gellett. N., and Galili. U., 1997. Porcine and bovine cartilage transplants in cynomolgus monkey: 1. A model for chronic xenograft rejection. Tranplantation 63:640–645.CrossRefGoogle Scholar
  63. Suzuki, E., and Naiki, M., 1984. Heterophile antibodies to rabbit erythrocytes in human sera and identification of the antigen as a giycolipid. J. Biochem. (Tokyo) 95:103–108.Google Scholar
  64. Teneberg. S., Lönnroth. 1., Torres Lopez. J.F., Galili. U., Olwegard Halvarsson. M., Angstrom. J., and Karlsson. K-A., 1996. Molecular mimicry in the recognition of glycosphingolipids by Galα3Galβ4GlcNAcβ-binding Closiridium difficile toxin A. human natural anti-α-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid. non-identical with the animal receptor. Glycobiology 6:599–609.PubMedCrossRefGoogle Scholar
  65. Thall, A.D., Maly. P., and Lowe. J.B., 1995. Oocyte Galα 1-3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270:21437–21442.PubMedCrossRefGoogle Scholar
  66. Thall, A.D., Murphy. H.S., and Lowe. J.B., 1996. α-galactosyltransferase deficient mice produce naturally occurring cytotoxic anti-Gal antibodies. Transplant. Proc. 28:556–557.PubMedGoogle Scholar
  67. Towbin, H., Rosenfelder. G., Weislander. J., Avila. J.L., Rojas, M., Szarfman, A., Esser. K., Nowack, H., and Timple. R., 1987. Circulating antibodies to mouse laminin in Chagas disease. American cutaneous Leishmaniasis and normal individuals recognize terminal galactosyl (α 1-3) galactose epitopes. J. F.xp. Med. 166:419–432.CrossRefGoogle Scholar
  68. Wang. L., Anaraki. F., Henion. T.R., and Galili. U., 1995a. Variations in activity of the human natural anti-Gal antibody in young and elderly populations. J. Gerontol. (Med. Sci.) 50A:M227–M233.CrossRefGoogle Scholar
  69. Wang, L., Radic, M.Z., and Galili. U., 1995b. Human anti-Gal heavy chain genes: Preferential use of VH3 and the presence of somatic mutations. J. Immunol. 155:1276–1285.PubMedGoogle Scholar
  70. Watkins, W.M., 1966. Blood group substances. Science 152:172–181.PubMedCrossRefGoogle Scholar
  71. Wiener, A.S., 1951. Origin of naturally occurring hemagglutinins and hemolysins: A review. J. Immunol. 66:287–295.PubMedGoogle Scholar
  72. Weislander, J., Mannsono, O., Kallin, E., Gabrielli, A., Nowack, H., and Timple, R., 1990, Specificity of human antibodies against Galα 1–3Gal carbohydrate epitope and distinction from natural antibodies reacting with Galαl-2Gal or Galα1–4Gal. Glycoconjugate J. 7:85–94.CrossRefGoogle Scholar
  73. Xu, Y., Lorf. T., Sablinski. T., Gianello. P., Bailin. M., Monroy. R., Kozlowski. T., Cooper. D.K.C., and Sachs, D.H., 1998. Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Galα 1–3Galβ 1-4Glc-R immunoaffinity column. Transplantation 65:172–179.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Uri Galili
    • 1
  • Le Wang
    • 1
  • Denise C. LaTemple
    • 2
  • Marko Z. Radic
    • 1
  1. 1.Department of Microbiology and ImmunologyMCP Hahnemann School of MedicinePhiladelphiaUSA
  2. 2.Department of Medicine, Division of Hematology and OncologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations