The α1,3-Galactosyltransferase Gene

  • David H. Joziasse
  • Joel H. Shaper
  • Nancy L. Shaper
Part of the Subcellular Biochemistry book series (SCBI, volume 32)


Cell surface glycoconjugates (glycoproteins and glycolipids) are well positioned topologically to be involved in cell-cell interactions and transmembrane signaling. Their glycans (sugar chains) protrude from the surface, and display considerable structural complexity. The glycan structures assembled in a given cell type are dictated in part by the subset of glycosyltransferases that are translationally expressed. As the relative levels of the various glycosyltransferases determine which carbohydrate structures are carried by eukaryotic glycoconjugates, they indirectly affect intercellular interactions. In particular, the terminal sugars of N-and O-linked glycans are known to play a role in receptor-mediated recognition and binding.


Blood Group World Monkey Sugar Chain Stem Region Polysialic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariga, T., Suzuki, M., Yu, R.K., Kuroda, Y., Shimamda, I., Inagaki, F., and Miyatake, T., 1989, Accumulation of unique globo-series glycolipids in PC 12h pheochromocytoma cells, J. Biol. Chem. 264:1516–1521.PubMedGoogle Scholar
  2. Ashford, D.A., Alafi, C.D., Gamble, V.M., Mackay, D.J.G., Rademacher, T.W., Williams, P.J., Dwek, R.A., Barclay, A.N., Davis, S.J., Somoza, C., Ward, H.A., and Williams, A.F., 1993, Site-specific glycosylation of recombinant rat and human soluble CD4 variants expressed in Chinese Hamster Ovary cells, J. Biol. Chem. 268:3260–3267.PubMedGoogle Scholar
  3. Avila, J.L. and Rojas. M., 1990. A galactosylα1.3mannose epitope on phospholipids of Leishmania mexicana and L. brasiliensis is recognized by trypanosomatid-infected human sera, J. Clin. Microbiol. 28:1530–1537.PubMedGoogle Scholar
  4. Avila, J.L., Rojas, M., and Galili, U., 1989, Immunogenic Galα1, 3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania, J. Immunol. 142:2828–2834.PubMedGoogle Scholar
  5. Blanken, W.M. and Van den Eijnden, D.H., 1985, Biosynthesis of terminal Galα1,3Galβl,4GlcNAc structures. Purification of a UDP-Gal:Galβ 1,4GlcNAc α1,3-galactosyltransferase from bovine thymus, J. Biol. Chem. 260:12927–12934.PubMedGoogle Scholar
  6. Bleil, J.D. and Wassarman, P.M., 1988, Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein’s sperm receptor activity. Proc. Natl. Acad. Sci. 85:6778–6782.PubMedCrossRefGoogle Scholar
  7. Breton, C., Oriol. R., and Imberty. A., 1996, Sequence alignment and fold recognition of fucosyltransferases, Glycobiology 6:vii–xii.PubMedCrossRefGoogle Scholar
  8. Breton. C. Oriol, R., and Imberty. A., 1998a. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8:87–94.PubMedCrossRefGoogle Scholar
  9. Breton, C., Bettler. E., Joziasse, D.H., Geremia, R.A., and Imberty. A., 1998b. Sequence-function relationships in prokaryotic and eukaryotic galactosyltransferases. J. Biochem. Tokyo in press.Google Scholar
  10. Brockhausen, I. and Schachter, H., 1997, Glycosyltransferases involved in N-and O-glycan biosynthesis, in: Glycosciences. Status and Perpectives, (H.-J. Gabius and S. Gabius, eds.). Chapman & Hall, Weinheim, pp. 79–113Google Scholar
  11. Chen, S., Zhou, S., Tan, J., and Schachter, H., 1998. Transcriptional regulation of the human UDP-GlcNAc:α-D-mannoside β1, 2-N-acetylglucosaminyltransferase II gene (MGAT2) which controls complex N-glycan synthesis. Glycoconjugate J. 15:301–308.CrossRefGoogle Scholar
  12. Cho, S.K. and Cummings, R.D., 1997, A soluble form of al.3-galactosyltransferase functions within cells to galactosylate glycoproteins. J. Biol. Chem. 272:13622–13628.PubMedCrossRefGoogle Scholar
  13. Cho, S.K., Yeh, J., Cho, M., and Cummings. R.D., 1996, Transcriptional regulation of α1.3-galactosyltransferase in embryonal carcinoma cells by retinoic acid. Masking of Lex antigens by α-galactosylation, J. Biol. Chem. 271:3238–3246.PubMedCrossRefGoogle Scholar
  14. Cho, S.K., Yeh, J., and Cummings. R.D., 1997. Secretion of al.3-galactosyltransferase by cultured cells and presence of enzyme in animal sera. Glycoconjugate J. 14:809–819.CrossRefGoogle Scholar
  15. Cummings, R.D. and Mattox. S.A., 1988, Retinoic-acid-induced differentiation of the mouse teratocarcinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose:β-D-galactosyl α1.3-galactosyltransferase. J. Biol. Chem. 263:511–519.PubMedGoogle Scholar
  16. Dabkowski, P.L., Vaughan. H.A., McKenzie. I.F.C., and Sandrin. M.S., 1993. Characterisation of a cDNA clone encoding the pig α 1,3-galactosyltransferase: Implications for xenotransplantation. Transplantation Proc. 25:2921.Google Scholar
  17. Elices, M.J. and Goldstein. I.J., 1989, Biosynthesis of bi-, tri-, and tetraantennary oligosaccharides containing α-D-galactosyl residues at their nonreducing termini. Branch specificity of the Ehrlich tumor cell α1,3-galactosyltransferase, J. Biol. Chem. 264:1375–1380.PubMedGoogle Scholar
  18. Ellegren, H., Chowdhary, B.P., Fredholm, M., Hoyheim, B., Johansson, M., Nielsen, P.B., Thomsen, P.D., and Andersson, L., 1994, A physically anchored linkage map of pig chromosome 1 uncovers sex-and position-specific recombination rates, Genomics 24:342–350.PubMedCrossRefGoogle Scholar
  19. Galili, U. and Swanson, K., 1991, Gene sequences suggest inactivation of α1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys, Proc. Natl. Acad. Sci. 88:7401–7404.PubMedCrossRefGoogle Scholar
  20. Galili, U., Shohet, S.B., Kobrin, F., Stults, C.L.M., and Macher, B.A., 1988, Man, apes and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263:17755–17762.PubMedGoogle Scholar
  21. Gowda, D.C. and Davidson, E.A., 1992, Structural features of carbohydrate moieties in snake venom glycoproteins, Biochem. Biophys. Res. Commun. 182:294–301.PubMedCrossRefGoogle Scholar
  22. Gowda, D.C. and Davidson, E.A., 1994, Isolation and characterization of novel mucin-like glycoproteins from cobra venom, J. Biol. Chem. 269:20031–20039.PubMedGoogle Scholar
  23. Gowda, D.C, Schultz, M., Bredehorst, R., and Vogel, C.-W., 1992, Structure of the major oligosaccharide of cobra venom factor, Mol. Immunol. 29:335–342.PubMedCrossRefGoogle Scholar
  24. Gustafsson, K., Strahan, K., and Preece, A., 1994, α1, 3-Galactosyltransferase: A target for in vivo genetic manipulation in xenotransplantation, Immunol. Rev. 141:59–70.PubMedCrossRefGoogle Scholar
  25. Harduin-Lepers, A., Shaper, J.H., and Shaper, N.L., 1993, Characterization of two cis-regulatory regions in the murine β1, 4-galactosyltransferase gene. Evidence for a negative regulatory element that controls initiation at the proximal site, J. Biol. Chem. 268:14348–14359.PubMedGoogle Scholar
  26. Haslam, D.B. and Baenziger, J.U., 1996, Expression cloning of Forssman glycolipid synthetase: A novel member of the histo-blood group ABO gene family, Proc. Natl. Acad. Sci. 93:10697–10702.PubMedCrossRefGoogle Scholar
  27. Henion, T.R., Macher, B.A., Anaraki, F., and Galili, U., 1994. Defining the minimal size of catalytically active primate α 1,3-galactosyltransferase: structure-function studies on the recombinant truncated enzyme, Glycobiology 4:193–201.PubMedCrossRefGoogle Scholar
  28. Ikematsu, S., Kaname, T., Ozawa, M., Yonezawa, S., Sato, E., Uehara, F., Obama, H., Yamamura, K., and Muramatsu, T., 1993, Transgenic mouse lines with ectopic expression of α 1,3-galactosyltransferase: production and characteristics, Glycobiology 3:575–580.PubMedCrossRefGoogle Scholar
  29. Johnston, D.S., Shaper, J.H., Shaper, N.L., Joziasse, D.H., and Wright, W.W., 1995, The gene encoding murine α 1,3-galactosyltransferase is expressed in female germ cells but not in male germ cells, Dev. Biol. 171:224–232.PubMedCrossRefGoogle Scholar
  30. Johnston, D.S., Wright, W.W., Shaper, J.H., Hokke, C.H., Van den Eijnden, D.H., and Joziasse, D.H., 1998, Murine sperm-zona binding: A fucosyl residue is required for a high affinity sperm-binding ligand. A second site on sperm binds a nonfucosylated, β-galactosyl-capped oligosaccharide, J. Biol. Chem. 273:1888–1895.PubMedCrossRefGoogle Scholar
  31. Joziasse, D.H., 1992, Mammalian glycosyltransferases: genomic organization and protein structure, Glycobiology 2:271–277.PubMedCrossRefGoogle Scholar
  32. Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.J., and Shaper, N.L., 1989, Bovine α 1,3-galactosyltransferase: isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA, J. Biol. Chem. 264:14290–14297.PubMedGoogle Scholar
  33. Joziasse, D.H., Shaper, J.H., Jabs, E.W., and Shaper, N.L., 1991a, Characterization of an α1,3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene, J. Biol. Chem. 266:6991–6998.PubMedGoogle Scholar
  34. Joziasse, D.H., Shaper, N.L., Shaper, J.H., and Kozak, C.A., 1991b, Gene for murine α 1,3-galactosyltransferase is located in the centromeric region of chromosome 2, Somatic Cell Mol. Genet. 17:201–205.CrossRefGoogle Scholar
  35. Joziasse, D.H., Shaper, N.L., Kim, D., Van den Eijnden, D.H., and Shaper, J.H., 1992, Murine α 1,3-galactosyltransferase. A single gene locus specifies four isoforms of the enzyme by alternative splicing, J. Biol. Chem. 267:5534–5541.PubMedGoogle Scholar
  36. Kurosawa, N., Inoue, M., L., Yoshida. Y.,and Tsuji. S., 1996. Molecular cloning and genomic analysis ofmouse Galβl,3 GalNAc-specific GalNAc α2.6-sialyltransferase. J. Biol. Chem. 271:15109–15116.PubMedCrossRefGoogle Scholar
  37. Larsen, R.D., Rajan. V.P., Ruff, M.M., Kukowskα-Latallo, J., Cummings, R.D., and Lowe, J.B., 1989, Isolation of a cDNA encoding a murine UDP-Gal:Galβl, 4GlcNAc-R α1.3-galactosyltransferase: Expression cloning by gene transfer, Proc. Natl. Acad. Sci. 86:8227–8231.PubMedCrossRefGoogle Scholar
  38. Larsen, R.D., Riverα-Marrero, C.A., Ernst. L.K., Cummings, R.D., and Lowe, J.B., 1990, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gall,4GlcNAc α1.3-galactosyltransferase cDNA. J. Biol. Chem. 265:7055–7061.PubMedGoogle Scholar
  39. Mercurio, A.M. and Robbins. P.W., 1985, Activation of mouse peritoneal macrophages alters the structure and surface expression of protein-bound lactosaminoglycans, J. Immunol. 135:1305–1312.PubMedGoogle Scholar
  40. Pal, S., Saito. M., Ariga. T., and Yu. R.K., 1992. UDP-Gal:globotriaosylceramide α-galactosyltransferase activity in rat pheochromocytoma (PC12h) cells, J. Lipid Res. 33:411–417.PubMedGoogle Scholar
  41. Pennington, J.E., Rastan, S., Roelcke. D., and Feizi. T., 1985, Saccharide structures of the mouse embryo during the first eight days of development. Inferences from immunocytochemical studies using monoclonal antibodies in conjunction with glycosidases, J. Embryol. Exp. Morphol. 90:335–361.PubMedGoogle Scholar
  42. Peters, B.P. and Goldstein. I.J., 1979. The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of α-D-galactopyranosyl groups. Exp. Cell Res. 120:321–334.PubMedCrossRefGoogle Scholar
  43. Rajput, B., Shaper, N.L., and Shaper, J.H., 1996. Transcriptional regulation of murine β1.4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J. Biol. Chem. 271:5131–5142.PubMedCrossRefGoogle Scholar
  44. Ruddle, F.H., 1997, Vertebrate genome evolution — the decade ahead. Genomics 46:171–173.PubMedCrossRefGoogle Scholar
  45. Saitou, N. and Yamamoto, F., 1997, Evolution of primate ABO blood group genes and their homologous genes. Mol. Biol. Evol. 14:399–411.PubMedCrossRefGoogle Scholar
  46. Sato, S. and Hughes, R.C., 1994. Regulation of secretion and surface expression of Mac-2. a galactoside-binding protein of macrophages. J. Biol. Chem. 269:4424–4430.PubMedGoogle Scholar
  47. Schachter, H., 1991. The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461.PubMedCrossRefGoogle Scholar
  48. Shaper, N.L., Shaper, J.H., Meuth. J.L., Fox. J.L., Chang, H., Kirsch. I.R., and Hollis. G.F., 1986. Bovine galactosyltransferase: Identification of a clone by direct immunological screening of a cDNA expression library, Proc. Natl. Acad. Sci. 83:1573–1577.PubMedCrossRefGoogle Scholar
  49. Shaper, N.L., Lin, S.-P., Joziasse, D.H., Kim, D., and Yang-Feng, T.L., 1992, Assignment of two human α 1,3-galactosyltransferase sequences (GGTA1 and GGTA1P) to chromosomes 9q33–q34 and 12ql4–ql5, Genomics 12:613–615.PubMedCrossRefGoogle Scholar
  50. Sheares, B.T. and Mercurio, A.M., 1987. Modulation of two distinct galactosyltransferase activities in populations of mouse peritoneal macrophages. J. Immunol. 139:3748–3752.PubMedGoogle Scholar
  51. Smith, D.F., Larsen, R.D., Mattox, S., Lowe, J.B., and Cummings, R.D., 1990, Transfer and expression of a murine UDP-Gal:β-D-Gal α 1,3-galactosyltransferase gene in transfected Chinese Hamster Ovary cells. Competition reactions between the α 1,3-galactosyltransferase and the endogenous α2,3-sialyltransferase. J. Biol. Chem. 265:6225–6234.PubMedGoogle Scholar
  52. Stoffyn, P., Stoffyn, A., and Hauser. G., 1973, Structure of trihexosylceramide biosynthesized tin vitro, J. Biol. Chem. 248:1920–1923.PubMedGoogle Scholar
  53. Strahan, K.M., Gu, F., Preece, A.F., Gustavsson, I., Andersson. L., and Gustafsson, K., 1995, cDNA sequence and chromosome localization of pig α 1,3-galactosyltransferase, Immunogenetics 41:101–105.PubMedCrossRefGoogle Scholar
  54. Strecker, G., Wieruszeski, J., Michalski, J.-C, Alonso, C., Leroy, Y., Boilly. B., and Montreuil, J., 1992, Primary structure of neutral and acidic oligosaccharide-alditols derived from the jelly coat of the Mexican axolotl. Occurrence of oligosaccharides with Fucal.3Fucαl,4-3-deoxy-D-glycero-D-galacto-nonulosonic acid and Galαl.4[Fucα1,2]Galβl,4GlcNAc sequences, Eur. J. Biochem. 207:995–1002.PubMedCrossRefGoogle Scholar
  55. Strecker, G., Wieruszeski, J., Plancke, Y., and Boilly, B., 1995, Primary structure of 12 neutral oligosaccharide-alditols released from the jelly coats of the anuran Xenopus laevis by reductive β-elimination, Glycobiology 5:137–146.PubMedCrossRefGoogle Scholar
  56. Svensson, E.C., Conley, P.B., and Paulson, J.C., 1992, Regulated expression of α2,6-sialyltransferase by the liver-enriched transcription factors HNF-l, DBP, and LAP. J. Biol. Chem. 267:3466–3472.PubMedGoogle Scholar
  57. Svensson, E.C., Soreghan, B., and Paulson, J.C., 1990, Organization of the β-galactoside a2.6-sialyltransferase gene. Evidence for the transcriptional regulation of terminal glycosylation, J. Biol. Chem. 265:20863–20868.PubMedGoogle Scholar
  58. Taguchi, T., Kitajima, K., Muto, Y., Inoue, S., Khoo, K., Morris, H., Dell, A., Wallace, R.A., Selman, K., and Inoue, Y., 1995, A precise structural analysis of a fertilization-associated carbohydraterich glycopeptide isolated from the fertilized eggs of euryhaline killi fish (Fundulus heteroclitus). Novel pentα-antennary N-glycan chains with a bisecting N-acetylglucosaminyl residue, Glycobiology 5:611–624.PubMedCrossRefGoogle Scholar
  59. Tearle, R.G., Tange, M.J., Zannetinno, Z.L., Katerelos, M., Shinkel, T.A., Van Denderen, B.J., Lonie, A.J., Lyons, I., Nottle, M.B., Cox, T., Becker, C., Peura, A.M., Wigley, P.L., Crawford, R.J., Robins, A.J., Pearse, M.J., and d’Apice, A.J., 1996, The α1,3-galactosyltransferase knockout mouse. Implications for xenotransplantation, Transplantation 61:13–19.PubMedCrossRefGoogle Scholar
  60. Thall, A., Maly, P., and Lowe, J.B., 1995. Oocyte Galαl, 3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse, J. Biol. Chem. 270:21437–21440.PubMedCrossRefGoogle Scholar
  61. Towbin, H., Rosenfelder, G., Wieslander, J., Avila, J.L., Rojas, M., Szarfman, A., Esser, K., Nowack, H., and Timpl, R., 1987, Circulating antibodies to mouse laminin in Chagas disease, American cutaneous Leishmaniasis, and normal individuals recognize terminal Galα1,3Gal epitopes, J. Exp.Med. 166:419–432.PubMedCrossRefGoogle Scholar
  62. Turco, S.J., Orlandini, P.A.,Jr., Homans, S.W., Ferguson, M.A.J., Dwek, R.A., and Rademacher, T.W., 1989, Structure of the phophosaccharide-inositol core of the Leishmania donovani lipophosphoglycan, J. Biol. Chem. 264:671 1–6715.Google Scholar
  63. Van den Eijnden, D.H., Joziasse, D.H., Koenderman, A.H.L., Blanken, W.M., Schiphorst, W.E.C.M., and Koppen, P.K., 1985, in: Glycoconjugates, Proceedings of the VIIIth International Symposium, Houston, (E.A. Davidson, J.C. Williams, N.M. Di Ferrante, eds.), Praeger Publishers, New York, p. 285.Google Scholar
  64. Vanhove, B., Goret, F., Mirenda, V., Soulillou, J.P., and Pourcel, C., 1996, Variability of α1,3-galactosyltransferase splicing isoforms in pig tissues, Transplantation Proc. 28:622–623.Google Scholar
  65. Vanhove, B., Goret, F., Soulillou, J.P., and Pourcel, C., 1997. Porcine α 1,3-galactosyltransferase: tissue-specific and regulated expression of splicing isoforms, Biochim. Biophys. Acta 1356:1–11.CrossRefGoogle Scholar
  66. Wang, X., O’Hanlon, T.P., Young, R.F., and Lau, J.T.Y., 1990, Rat β-galactoside α2,6-sialyltransferase genomic organization: alternate promoters direct the synthesis of liver and kidney transcripts, Glycobiology 1:25–31.PubMedCrossRefGoogle Scholar
  67. Watkins, W.M., 1987, Biochemical genetics of blood group antigens: retrospect and prospect, Biochem. Soc. Trans. 15:620–624.PubMedGoogle Scholar
  68. Weinstein, J., Lee, E.U., McEntee, K., Lai, P.-H., and Paulson, J.C, 1987, Primary structure of β-galactoside a2,6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor, J. Biol. Chem. 262:17735–17743.PubMedGoogle Scholar
  69. Yamamoto, F. and Hakomori, S., 1990, Sugar-nucleotide donor specificity of histo-blood group A and AB transferases is based on amino acid substitutions, J. Biol. Chem. 265:19257–19262.PubMedGoogle Scholar
  70. Yamamoto, F., Marken, J., Tsuji, T., White, T., Clausen. H., and Hakomori, S., 1990a, Cloning and characterization of DNA complementary to human UDP-GalNAc:Fucαl,2Gal α1,3-GalNAc-transferase (histo-blood group A transferase) mRNA, J. Biol. Chem. 265:1146–1151.PubMedGoogle Scholar
  71. Yamamoto, F., Clausen, H., White, T., Marken, J., and Hakomori, S., 1990b, Molecular genetic basis of the histo-blood group ABO system, Nature 345:229–233.PubMedCrossRefGoogle Scholar
  72. Yamamoto, F., McNeill, P.D., and Hakomori, S., 1991, Identification in human genomic DNA of the sequence homologous but not identical to either the histo-blood group ABH genes or α 1,3-galactosyltransferase pseudogene, Biochem. Biophys. Res. Commun. 175:986–994.PubMedCrossRefGoogle Scholar
  73. Yamamoto, F., McNeill, P.D., and Hakomori, S., 1992, Human histo-blood group A2 transferase coded by A2 allele. one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem. Biophys. Res. Commun. 187:366–374.PubMedCrossRefGoogle Scholar
  74. Yamamoto. F., McNeill, P.D., Kominato, Y., Yamamoto, M., Hakomori, S., Ishimoto. S., Nishida. S., Shima, M., and Fujimura. Y., 1994. Molecular genetic analysis of the ABO blood group system: 2. cis-AB alleles. Vox Sang. 64:120–123.CrossRefGoogle Scholar
  75. Yamamoto, F., McNeill, P.D., and Hakomori, S., 1995. Genomic organization of human histo-blood group ABO genes, Glycobiology 5:51–58.PubMedCrossRefGoogle Scholar
  76. Yoshida, Y., Kurosawa, N., Kanematsu, T., Kojima, N., and Tsuji, S., 1996. Genomic structure and promoter activity of the mouse polysialic acid synthase gene (mST8Sia II). Brain-specific expression from a TATA-less GC-rich sequence, J. Biol. Chem. 271:30167–30173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • David H. Joziasse
    • 1
  • Joel H. Shaper
    • 2
  • Nancy L. Shaper
    • 3
  1. 1.Departmentof Medical ChemistryVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Cell Structure and function Laboratory,Oncology Center, and Department of Pharmacology and Molecular SciencesThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Cell Structure and Function Laboratory, Oncology CenterThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations