Advertisement

Enhancement of Autologous Tumor Vaccine Immunogenicity by Anti-Gal

  • Denise C. LaTemple
  • Uri Galili
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 32)

Abstract

Anti-Gal is considered to be the most prevalent naturally occurring antibody common to all humans. It represents approximately 1 % of total IgG in the serum in humans and interacts specifically with the α-gal epitope of cell surface glycoproteins and glycolipids (see the chapter on “The Natural Anti-Gal Antibody” Galili, 1993; Galili et al., 1985; Galili et al., 1984). Understandably, the α-gal epitope is not expressed on tissues or cells derived from human sources since the enzyme synthesizing this epitope, the α 1,3 galactosyltransferase, is not active in humans (see the chapter on “Evolution of α 1,3 Galactosyltransferase and the α-Gal Epitope” Galili et al., 1988). But imagine the consequences of a human cell genetically or enzymatically engineered to express the α-gal epitope on its surface and then introduced into a normal individual. A prediction of the outcome lies in studies in xenotransplantation where non-primate mammalian tissues, which normally express the α-gal epitope, succumb to hyperacute immune rejection when trans- planted into a human recipient (see the chapter ofKobayashi and Cooper on “AntiGal in Xenotransplantation” Collins et al., 1994; Galili 1993b; Sandrin et al., 1993; Good et al., 1992). Anti-Gal thus forms an immunological barrier preventing xenotransplantation facilitated by binding to a-gal epitopes on the surface of the xenograft. Both IgM and IgG isotypes of anti-Gal bind the a-gal epitopes on the xenograft and destroy it through antibody mediated effector mechanisms such as antibody dependent cell cytotoxicity (ADCC) and complement fixation and lysis (Galili 1993b; Sandrin et al., 1993; Good et al., 1992).

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Class Major Histocompatibility Complex Molecule Autologous Tumor Tumor Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher A.L., Mule J.J., Kasid A., Restifo N.P., Salo J.C, Reichert C.M., Jaffe G., Fendly B, Kriegler M., and Rosenberg S.A., 1991, Murine tumor cells transduced with the gene for tumor necrosis factor alpha, J. Immunol. 146: 3227–3234.PubMedGoogle Scholar
  2. Baskar S., Ostrand-Rosenberg S., Nabavi N., Nadler L., Freeman G., and Glimcher L., 1993, Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated MHC class II molecules, Proc. Natl. Acad. Sci. USA 90: 5687–5690.PubMedCrossRefGoogle Scholar
  3. Boehm U., Klamp T., Groot M., and Howard J.C., 1997, Cellular responses to interferon-γ, Annu. Rev. Immunol. 15: 749–795.PubMedCrossRefGoogle Scholar
  4. Boon T., Gajewski T.F., and Coule P.G., 1995, From defined human tumor antigens to effective immunization?, Immunol. Today 16: 334–336.PubMedCrossRefGoogle Scholar
  5. Browning M.J., and Bodmer W.F., 1992, MHC antigens and cancer: implications for T-cell surveillance, Curr. Opinion Immunol. 4: 613–618.CrossRefGoogle Scholar
  6. Celis E., and Chang T. W., 1984, Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen, Science 224: 297–299.PubMedCrossRefGoogle Scholar
  7. Celis E., Abraham K.G., and Miller R.W., 1987, Modulation of the immunological response to hepatitis B virus by antibodies, Hepatology 7: 563–568.PubMedCrossRefGoogle Scholar
  8. Chen L., Ashe S., Brady W.A., Hellstrom I., Hellstrom K.E., Ledbetter J.A., McGowan P., and Linsley P.S., 1992, Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4, Cell 71: 1093–1102.PubMedCrossRefGoogle Scholar
  9. Chen L., Chen D., Block E., O’Donnell M., Kufe D.W., and Clinton S.K., 1997, Eradication of murine bladder carcinoma by intratumor injection of a bicistronic adenoviral vector carrying cDNAs for the IL-12 heterodimer and its inhibition by the IL-12 p40 subunit homodimer, J. Immunol. 159:351–359.PubMedGoogle Scholar
  10. Collins B.H., Cotterell A.H., McCurry K.R., Alvarado C.G., Magee J.C, Parker W., and Platt J.L., 1994, Cardiac xenografts between primate species provide evidence of the α-galactosyl determinant in hyperacute rejection, J. Immunol. 154: 5500–5510.Google Scholar
  11. Colombo M.P., Modesti A., Parmiani G., and Forni G., 1992, Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk, Cancer Res. 52: 4853–4857.PubMedGoogle Scholar
  12. Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., and Mulligan R.C., 1993, Vaccination with irradiated tumor cells engineered to seCrete murine GM-CSF stimulates potent, specific, and long lasting anti-tumor immunity, Proc. Nail. Acad. Sci. USA 90: 3539–3543.CrossRefGoogle Scholar
  13. Falo L.D., Kovacsovics-Bankowski M., Thompson K., and Rock K.L., 1995, Targeting antigen into the phagocytic pathway in vivo induces protective tumor immunity, Nat. Med. 1: 649–653.PubMedCrossRefGoogle Scholar
  14. Fanger N.A., Wardwell K., Shen L., Tedder T.F., and Guyre P.M., 1996, Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells, J. Immunol. 157: 541–548.PubMedGoogle Scholar
  15. Fearon E.R., Pardoll D.M., Itaya T., Golumbek P., Levitsky H.I., Simons J.W., Karasuyama H., Vogelstein B., and Frost P., 1990, Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response, Cell 60: 397–403.PubMedCrossRefGoogle Scholar
  16. Foley E.J., 1953, Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin, Cancer Res. 13: 835–837.PubMedGoogle Scholar
  17. Galili U., Rachmilewitz E.A., Peleg A., and Flechner I., 1984, A unique natural human IgG antibody with anti-α-galactosyl specificity,J. Exp. Med. 160: 1519–1531.PubMedCrossRefGoogle Scholar
  18. Galili U., Macher B.A., Buehler J., and Shohet S.B., 1985, Human natural anti-α-galactosyl IgG. II. The specific recognition of α-(1.3)-linked galactose residues, j. Exp. Med. 162: 573–582.PubMedCrossRefGoogle Scholar
  19. Galili U., Shohet S.B., Kobrin E., Stults C.L.M., and Macher B.A., 1988, Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263: 17755–17762.PubMedGoogle Scholar
  20. Galili U., 1993a, Evolution and pathophysiology of the human natural anti-α-galactosyl IgG (anti-Gal) antibody, Springer Semin. Immunopathol. 15: 155–171.PubMedCrossRefGoogle Scholar
  21. Galili U., 1993b, Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans, Immunol. Today 14: 480–482.PubMedCrossRefGoogle Scholar
  22. Galili U., and LaTemple DC. 1997, Natural anti-Gal antibody as a universal augmenter of autologous tumor vaccine immunogenicity, Immunol. Today 18: 281–285.PubMedCrossRefGoogle Scholar
  23. Gansbacher B., Zier K., Daniels B., Cronin K., Bannerji R., and Gilboa E., 1990, Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172: 1217–1224.PubMedCrossRefGoogle Scholar
  24. Golumbek P.T., Lazenby A.J., Levitsky H.I., Jaffee E.M., Karasuyama H., Baker M., and Pardoll D.M., 1991. Treatment of established renal cancer by rumor cells engineered to secrete interleukin-4, Science 254: 713–716.PubMedCrossRefGoogle Scholar
  25. Good A.H., Cooper D.K.C., Malcolm A.J., Ippolito R.M., Koren E., Neethling FA., Ye Y., Zuhdi N., and Lamontagne L.R., 1992, Identification of carbohydrate structures which bind human anti-porcine antibodies: implications for discordant grafting in man, Transplant Proc. 24: 559–562.Google Scholar
  26. Gorelik, E., Duty, L., Anaraki F., and Galili, U. 1995. Alterations of cell surface carbohydrates and inhibition of metastatic property of murine melanomas by l,3galactosyltransferase gene transfection. Cancer Res. 55:4168–4173PubMedGoogle Scholar
  27. Gosselin E.J., Wardwell K., Gosselin D.R., Alter N., Fisher J.L., and Guyre P., 1992. Enhanced antigen presentation using human Fcγ receptor (monocyte/macrophgel-specific immunogens, J. Immunol. 149: 3477–3481.PubMedGoogle Scholar
  28. Grabbe S., Beisserts S., Schwartz T., and Granstein R.D., 1995. Dendritic cells as initiators of tumor immune response: a possible strategy for tumor immunotherapy?. Immunol. Today 16: 117–121.PubMedCrossRefGoogle Scholar
  29. Greenberg P.D., 1991, Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells, Adv. Immunol. 49: 281–355.PubMedCrossRefGoogle Scholar
  30. Guinan E.C., Gribben J.G., Boussiotis V.A., Freeman G.J., and Nadler L.M., 1994, Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 84: 3261–3282.PubMedGoogle Scholar
  31. Gutterman J.U., Hersh E.M., Rodriguez V., McCredie K.B., Mavligit G., Reed R., Burgess M.A., Smith T., Gehan E., Bodey G.P., and Freireich E.J., 1974, Chemoimmunotherapy of adult acute leukemia: prolongation of remission in myeloblastic leukemia with BCG, Lancet 2: 1405–1409.PubMedCrossRefGoogle Scholar
  32. Hellstrom K.E., 1991, In Biologic Therapy of Cancer. J.B. Lippincott.Google Scholar
  33. Henion T.R., Macher B.A., Anaraki F., and Galili U., 1994, Defining the minmal size of catalytically active primate α1,3galactosyltransferase: structure function studies on the recombinant truncated enzyme, Glycobiology 4: 193–201.PubMedCrossRefGoogle Scholar
  34. Herberman R.B., 1977, In Mechanisms of Tumor Immunity (Green I, Cohen S, McCluskey RT, eds.), pp. 175–191. J. Wiley and SonGoogle Scholar
  35. Herberman R.B., 1992, Tumor Immunology, JAMA 268: 2935–2939.PubMedCrossRefGoogle Scholar
  36. Herin M., Lemoine C., Weynants P., Vesiere F., Van Pel A., Knuth A., Devos R., and Boon T., 1987, Production of stable cytolytic T-cell clones directed against autologous human melanoma, Intl J. Cancer 39:390–397.CrossRefGoogle Scholar
  37. Hollinshead A., Stewart T.H.M., Takita H., Dalbow M., and Concannon J., 1987, Adjuvant specific active lung cancer immunotherapy trials. Tumor-associated antigens, Cancer 60: 1249–1262.PubMedCrossRefGoogle Scholar
  38. Hoover H.C., Surdyke M., Dangel R.B., Peters L.C., and Hanna M.G., 1984, Delayed cutaneous hypersensitivity to autologous tumor cells in colrectal cancer patients immunized with an autologous tumor cell Bacillus Calmette-Guerin vaccine, Cancer Res. 44: 1671–1676.PubMedGoogle Scholar
  39. Houston W.E., Kremer R.J., Crabbs C.L., and Spertzel R.O., 1977, Inactivated Venezuelan equine encephalomyelitis virus vaccine complexed with specific antibody: enhanced primary immune response and altered pattern of antibody class elicited, J. Infect. Dis. 135: 600–610.PubMedCrossRefGoogle Scholar
  40. Huang A. Y., Golumbek P., Ahmadzadeh M., Jaffee E., Pardoll D., and Levitsky H., 1994, Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens, Science 264: 961–965.PubMedCrossRefGoogle Scholar
  41. Hui K., Grosveld F., and Festenstein H., 1984, Rejection of transplantable AKR leukaemic cells following MHC DNA-mediated cell transformation, Nature 311: 750–752.PubMedCrossRefGoogle Scholar
  42. Kast W.M., Offringa R., Peters P.J., Voordouw A.C., Meloen R.H., Van der En A.J., and Melief C.M., 1989, Eradication of adenovirus E1-induced tumors by E1A specific cytotoxic T lymphocytes, Cell 59: 603–614.PubMedCrossRefGoogle Scholar
  43. Klein G., and Klein E., 1977, Rejectability of virus-induced tumors and non-rejectability of spontaneous tumors: a lesson in contrasts, Transplant Proc. 9: 1095–1104.PubMedGoogle Scholar
  44. Klingemann H.G., and Dougherty G.J., 1996, Site-specific delivery of cytokines in cancer, Molec. Med. Today 2: 154–159.CrossRefGoogle Scholar
  45. Knuth A., Danowski B., Oettgen H.F., and Old L., 1984, T-cell mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin-2-dependent T-cell cultures, Proc. Natl. Acad. Sci. USA 81: 3511–3515.PubMedCrossRefGoogle Scholar
  46. Knuth A., Wolfel T., Klehmann E., Boon T., and Meyer Zum Bueschenfelde K.H., 1989, Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection, Proc. Natl. Acad. Sci. USA 86: 2804–2808.PubMedCrossRefGoogle Scholar
  47. Lanzavecchia A., 1985, Antigen specific interactions between T and B cells, Nature 314: 537–539.PubMedCrossRefGoogle Scholar
  48. Lanzavecchia A., 1993, Identifying strategies for immune intervention, Science 260: 937–944.PubMedCrossRefGoogle Scholar
  49. Lanzavecchia A., 1996, Mechanisms of antigen uptake for presentation, Curr. Opin. Immunol. 8:348–354.PubMedCrossRefGoogle Scholar
  50. LaTemple D.C., Henion T.R., Anaraki F., and Galili U., 1996, Synthesis of α-galactosyl epitopes by recombinant α 1,3galacotysltransferase for opsonization of human tumor cell vaccines by anti-galactose, Cancer Res. 56: 3069–3074.Google Scholar
  51. LaTemple D.C., and Galili U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α 1,3 galactosyltransferase, Xenotransplantation 5: 191-196.Google Scholar
  52. Liu C., Gosselin E.J., and Guyre P.M., 1996, Fc gamma RII on human B cells can mediate enhanced antigen presentation, Cell. Immunol. 167: 188–194.PubMedCrossRefGoogle Scholar
  53. Lord E.M., and Frelinger J.G., 1998, Tumor immunotherapy: cytokines and antigen presentation, Cancer Immunol. Immunother. 46: 75–81.PubMedCrossRefGoogle Scholar
  54. Maass G., Schmidt W., Berger M., Schilcher F., Koszik F., Schneeberger A., Stingl G., Birnstiel M.L., and Schweighoffer T., 1995, Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination, Proc. Natl. Acad. Sci. USA 92: 5540–5544.PubMedCrossRefGoogle Scholar
  55. Mackay C.R., Marston W.L., and Dudler L., 1990. Naive and memory T cells show distinct pathways of lymphocyte recirculation, J. Exp. Med. 171: 801–817.Google Scholar
  56. Mackay C.R., Marston W., and Dudler L., 1992, Altered patterns of T cell migration through lymph nodes and skin following antigen challenge, Eur. J. Immunol. 22: 2205–2210.PubMedCrossRefGoogle Scholar
  57. Manca F., Fenoglio D., LiPira G., Kunkl A., and Celada F., 1991. Effect of antigen/antibody ratio on macrophage uptake, processing and presentation to T cells of antigen complexed with polyclonal antibodies, J. Exp. Med. 173: 37–48.PubMedCrossRefGoogle Scholar
  58. McCune C.S., O’Donnell R.W., Marquis D.M., and Sahasrabudhe D.M., 1990, Renal cell carcinoma treated by vaccines for active specific immunotherapy: correlation of survival with skin testing by autologous tumor cells, Cancer Immunol. Immunother. 32: 62–66.PubMedCrossRefGoogle Scholar
  59. Mitchison N.A., 1955, Studies on the immunological response to foreign tumor transplants in the mouse: I. The role of lymph node cells in conferring immunity by adoptive transfer, J. Exp. Med. 102: 157–177.PubMedCrossRefGoogle Scholar
  60. Moller P., and Hammerling G., 1992. The role of surface HLA-A, B, C molecules in tumor immunity, Cancer Surv. 13: 101–128.PubMedGoogle Scholar
  61. Nossal G.J.V., 1993, Tolerance and ways to break it, Ann. NY Acad. Sci. 690: 34–41.PubMedCrossRefGoogle Scholar
  62. Old L.J., 1996, Immunotherapy for Cancer, Scientific American 275: 136–143.PubMedCrossRefGoogle Scholar
  63. Pardoll D.M., 1993, Cancer vaccines, Immunol.Today. 14: 310–316.PubMedCrossRefGoogle Scholar
  64. Pardoll D.M., 1994, A new look for the 990s. Nature 369: 357–358.PubMedCrossRefGoogle Scholar
  65. Powles R.L., Russel J., and Lister T. A., 1977, Immunotherapy of acute myelogenous leukemia: a controlled clinical study of 2.5 years after entry of the last patient, Br. J. Cancer. 35: 265–272.PubMedCrossRefGoogle Scholar
  66. Prehn R.T., and Main J.M., 1957. Immunity to methylcholanthrene-induced sarcomas, j. Natl. Cancer Inst. 18: 769–778.PubMedGoogle Scholar
  67. Restifo N.P., Spiess P.J., Karp S.E., Mule J.J., and Rosenberg S.A., 1992, A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma eleicits CD8+ T cells against the wild-type tumor: Correlation with antigen presentation capability, J. Exp. Med. 175: 1423–1431.PubMedCrossRefGoogle Scholar
  68. Rosenberg S.A., Spiess P., and Lafreniere R., 1986, Anew approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes, Science 233: 1318–1321.PubMedCrossRefGoogle Scholar
  69. Roth C., Rochlitz C., and Kourilsky P., 1994, Immune response against tumors, Adv. Immunol. 57: 281–351.Google Scholar
  70. Sallusto F., and Lanzavecchia A., 1994, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colonly-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med. 179:1109–1118.PubMedCrossRefGoogle Scholar
  71. Sandrin M., Vaughan H.A., Dabkowski P.L., and McKenzie I.F.C., 1993, Anti-pig IgM antibodies in human serum react predominantly with Gal(α1–3)Gal epitopes, Proc. Natl. Acad. Sci. USA 90: 11391–11395.PubMedCrossRefGoogle Scholar
  72. Schmitt D.A., Hanau D., Bieber T., Dezutter-Dambuyant C., Schmitt D., Fabre M., Pauly G., and Cazenave J.P., 1990, Human epidermal Langerhans cells express only the 40-kilodalton Fc gamma receptor (FcRII), J. Immunol. 144: 4284–4290.PubMedGoogle Scholar
  73. Schrier P.I., and Peltenburg L.T.C., 1993, Relationship between myc oncogene activation and MHC class I expression, Adv. Cancer Res. 60: 181–246.PubMedCrossRefGoogle Scholar
  74. Schwarz R.H., 1990, A cell culture model for T lymphocyte clonal anergy, Science 248:1349–1356.CrossRefGoogle Scholar
  75. Schwarz R.H., 1992, Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy, Cell 71: 1065–1068.CrossRefGoogle Scholar
  76. Schweighoffer T., Schmidt W., Buschle M., and Birnstiel M.L., 1996, Depletion of naive T cells of the peripheral lymph nodes abrogates systemic antitumor protection conferred by IL-2 secreting cancer vaccines, Gene Therapy 3:819–824.PubMedGoogle Scholar
  77. Stoner R.D., and Terres G., 1963, Enhanced antitoxin responses in irradiated mice elicited by complexes of tetanus toxoid and specific antibody, J. Immunol. 91: 761–770.PubMedGoogle Scholar
  78. Sulitzeanu D., 1993, Immunosuppressive factors in human cancer, Adv. Cancer Res. 60: 247–267.PubMedCrossRefGoogle Scholar
  79. Sznol M., and Holmlund J., 1997, Antigen-specific agents in development, Seminars in Oncology 24: 173–186.PubMedGoogle Scholar
  80. Thall A.D., Maly P., and Lowe J.B., 1995, Oocyte Galα 1–3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse, J. Biol. Chem. 270: 21437–21440.PubMedCrossRefGoogle Scholar
  81. Thall A.D., Murphy H.S., and Lowe J.B., 1996, α1, 3galactosyltransferase-deficient mice produce naturally occurring cytotoxic anti-Gal antibodies, Transplant. Proc. 28: 556–557.PubMedGoogle Scholar
  82. Townsend S.E., and Allison J.P., 1993, Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells, Science 259: 368–370.PubMedCrossRefGoogle Scholar
  83. Unkeless J.C., 1989, Function and heterogeneity of human Fc receptors for immunoglobulin G, J. Clin. Invest. 83:355–361.PubMedCrossRefGoogle Scholar
  84. Van den Eynde B., and Brichard V.G., 1995, New tumor antigens recognized by T cells, Current Opin. Immunol. 7: 674–681.CrossRefGoogle Scholar
  85. Vogler W., Bartolucci A.A., and Omura G.A., 1978, A randomized clinical trial of remission induction, consolidation, and chemoimmunotherapy maintenance in adult myeloblastic leukemia, Cancer Immunol. Immunother. 3: 163–170.CrossRefGoogle Scholar
  86. Wallich R., Bulbuc N., Hammerling G.J., Katzav S., Segal S., and Feldman M., 1985, Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection, Nature 315: 301–305.PubMedCrossRefGoogle Scholar
  87. Wang R.F., and Rosenberg S.A., 1996, Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J. Leukocyte Biology 60: 296–309.Google Scholar
  88. Zinkernagel R.M., Ehl S., Aichele P., Oechen S., Kundig T., and Hengartner H., 1997, Antigen localisation regulates immune responses in a dose-and time-dependent fashion: a geographical view of immune reactivity, Immunological Reviews 156: 199–209.PubMedCrossRefGoogle Scholar
  89. Zuhrie S.R., Harris R., and Freeman C.B., 1980, Immunotherapy alone vs. no maintenance treatment in acute myelogenous leukemia, Br. J. Cancer 41: 372–337.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Denise C. LaTemple
    • 1
  • Uri Galili
    • 2
  1. 1.Department of Medicine, Division of Hematology and OncologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Microbiology and ImmunologyMCP Hahnemann School of MedicinePhiladelphiaUSA

Personalised recommendations