Anti-Xenograft Immune Responses in α1,3-Galactosyltransferase Knock-Out Mice

  • Martin J. Pearse
  • Peter J. Cowan
  • Trixie A. Shinkel
  • Choa-Guang Chen
  • Anthony J. F. d’Apice
Part of the Subcellular Biochemistry book series (SCBI, volume 32)


There is now an abundant of evidence (briefly reviewed below), derived from a variety of in vitro, ex vivo and in vivo studies, to demonstrate that Galactose al, 3 galactose (α-Gal) is the major xenoantigen on murine and porcine cells and tissues recognised by naturally occurring xenoantibody in human plasma (Sandrin et al., 1993; Cooper et al., 1993a; Galili et al., 1988b). The αl,3 galactosyltransferase (α1, 3GT) enzyme that forms this linkage is present in all mammals with the notable exceptions of human and Old World monkeys, in which the α1,3GT gene has been inactivated as the result of frame shift and nonsense mutations (Galili and Swanson, 1991). As a consequence of not expressing the α-Gal epitope, humans develop high titre anti-Gal antibodies (IgG, IgM and IgA) due to exposure to α-Gal on the surface ofenteric bacteria and other pathogens (Galili et al., 1988a). In order to establish a small animal model to study the role of anti-Gal antibodies in xenograft rejection we generated a line of mice lacking the α-Gal epitope by inactivating the α 1,3GT gene (Tearle et al., 1996). These mice will subsequently be referred to as GaiT KO. A similar line of mice were generated at approximately the same time by (Thall et al (1995), primarily to investigate the proposed role of the α 1,3galactosyltransferase enzyme in fertilization. The main focus of this chapter will be to review the biology ofthese mice, with particular emphasis on their application as a model to study anti-Gal antibody mediated anti-xenograft immune responses.


Hyperacute Rejection Xenograft Rejection Cobra Venom Factor Cell Surface Glycosylation Delay Xenograft Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, A., Groth. C. G., Korsgren. O., Tibell. A., Tollemar. J., Kumagai. M., Moller, E., Bolinder, J., Ostman, J., Bjoersdorff. A., and Hellerstrom. C. 1992. Transplantation of Porcine Fetal Islet-Like Cell Clusters to Three Diabetic Patients. Transplant.Proc. 24:677–678.PubMedGoogle Scholar
  2. Avila. J. L., Rojas, M., and Galili. U., 1989. Immunogenic Galα1–3Gal Carbohydrate Epitopes are present on Pathogenic American Trypanosoma and Leishmania. J.Immunol. 142:2828–2834.PubMedGoogle Scholar
  3. Azimzadeh. A., Wolf. P., Dalmasso. A. P., Odeh, M. Belier. J. P., Fabre. M., Charreau. B., Thibaudeau, K., Cinqualbre. J., Soulillou, J. P., and Anegon, I., 1996, Assessment of hyperacute rejection in a rat-to-primate cardiac xenograft model. Transplantation 61:1305–1313.PubMedCrossRefGoogle Scholar
  4. Bach, F. H., Ferran, C., Hechenleitner, P., Mark, W., Koyamada. N., Miyatake, T., Winkler, H., Badrichani, A., Candinas, D., and Hancock, W. W., 1997. Accommodation of vascularized xenografts: Expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment, Nature Med. 3:196–204.PubMedCrossRefGoogle Scholar
  5. Bach, F. H., Robson, S. C., Ferran, C., Winkler, H., Millan, M. T., Stuhlmeier, K. M., Vanhove, B., Blakely, M. L., Vanderwerf, W. J., Hofer, E., Demartin. R., and Hancock, W. W., 1994, Endothelial cell activation and thromboregulation during xenograft rejection. Immunol Rev. 141:5–30.PubMedCrossRefGoogle Scholar
  6. Blakely, M. L., Vanderwerf. W. J., Berndt. M. C., Dalmasso. A. P., Bach. F. H., and Hancock, W. W., 1994, Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection, Transplantation 58:1059–1066.PubMedGoogle Scholar
  7. Candinas, D., Lesnikoski, B. A., Robson, S. C., Miyatake, T., Scesney, S. M., Marsh, H. C., Ryan, U. S., Dalmasso, A. P., Hancock, W. W., and Bach, F. H., 1996, Effect of repetitive high-dose treatment with soluble complement receptor type 1 and cobra venom factor on discordant xenograft survival, Transplantation 62:336–342.PubMedCrossRefGoogle Scholar
  8. Chen, C. G., Fisicaro, N., Shinkel, T. A., Aitken, V., Katerelos, M., Vandenderen, B. J. W., Tange, M. J., Crawford, R. J., Robins, A. J., Pearse, M. J., and d’Apice, A. J. F., 1996, Reduction in Gal-alpha 1,3-Gal epitope expression in transgenic mice expressing human H-transferase, Xenotransplantation 3:69–75.CrossRefGoogle Scholar
  9. Chen, C. G., Salvaris, E., Romanella, M., Aminian, A., Katerelos, M., Fisicaro, N., d’Apice, A. J., and Pearse, M. J., 1998, Transgenic expression of human αl,2fucosyltransferase prolongs mouse heart survival in an ex vivo model of xenograft rejection. Transplantation 65:832–837.PubMedCrossRefGoogle Scholar
  10. Cooper, D. K. C., Good, A. H., Koren, E., Oriel, R., Malcom, A. J., Ippolito, R. M., Neethling, F. A., Romano, E.,and Zuhdi, N., 1993, Identification ofα-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man., Transplant Immunology 1:198–205.PubMedCrossRefGoogle Scholar
  11. Cooper, D. K. C., Koren, E.,and Oriol, R., 1993, Genetically Engineered Pigs, Lancet 342:682–683.Google Scholar
  12. Cowan, P. J., Chen, C. G., Shinkel, T. A., Fisicaro, N., Salvaris, E., Aminian, A., Romanella, M., Pearse, M. J., and d’Apice, A. J., 1998, Knock-out of al, 3galactosyltransferase or expression of α1, 2 fucosyltransferase further protects CD55-and CD59-expressing mouse hearts in an ex vivo model of xenograft rejection, Transplantation:In Press.Google Scholar
  13. Cowan, P. J., Shinkel, T. A., Aminian, A., Romanella, M., Wigley, P. L., Lonie, A. J., Nottle, M. B., Pearse, M. J., and d’Apice, A. J., 1998, High-level co-expression of complement regulators on vascular endothelium in transgenic mice: CD55 and CD59 provide greater protection from human complement-mediated injury than CD59 alone, Xenotransplanlation:In Press Google Scholar
  14. Cowan, P. J., Shinkel, T. A., Witort, E. J., Barlow, H., Pearse, M. J., and Dapice, A. J. F., 1996, Targeting gene expression to endothelial cells in transgenic mice using the human intercellular adhesion molecule 2 promoter, Transplantation 62:155–160.PubMedCrossRefGoogle Scholar
  15. David, K., Ollert, M. W., Juhl, H., Vollmert, C., Entmann, R., Vogel, C. W., and Bredehorst, R., 1996, Growth arrest of solid human neuroblastoma xenografts in nude rats by natural IgM from healthy humans, Nature Medicine 2:686–689.PubMedCrossRefGoogle Scholar
  16. Galili, U., 1998, Anti-α-galactosyl (anti-Gal) antibody damage beyond hyperacute rejection, in Xenotransplantation, Second Edition (D.K. Cooper, E. Kemp, J.L. Platt and D.J. White, eds), Springer, Berlin, pp. 95–103.Google Scholar
  17. Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A., 1987, Evolutionary relationship between natural anti-Gal antibody and the Galα1,3Gal epitope in primates, Proc. Natl.Acad.Sci.USA. 84:1369–1373.PubMedCrossRefGoogle Scholar
  18. Galili, U., La Temple, DC, Walgenbach, A. W., and Stone, K. R., 1997, Porcine and bovine cartilage in cynomolgus monkeys: ii. Changes in anti-Gal response during chronic rejection, Transplantation 63:46–51.CrossRefGoogle Scholar
  19. Galili, U., Mandrell, R. E., Hamedeh, R. M., Shohet, S. B., and Griffiths, J. McL, 1988, Interaction between natural anti-α-galactosyl immunoglobulin G and bacterial of the human flora, Immunity and Infection 56:1730–1737.Google Scholar
  20. Galili, U., Shohet, S. B., Korbin, E., Stults, C. L. M., and Macher, B. A., 1988, Man, apes and old world monkeys differ from other mammals in the expression ofα-galactosyl epitopes on nucleated cells, J.Biol.Chem. 263:17755–17762.PubMedGoogle Scholar
  21. Galili, U., and Swanson, K., 1991, Gene Sequences Suggest Inactivation of alphα-1,3-Galactosyltransferase in Catarrhines After the Divergence of Apes from Monkeys, Proc.Natl.Acad.Sci.USA, 88:7401–7404.PubMedCrossRefGoogle Scholar
  22. Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., and Groth, C. G., 1995, Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters, Transplantation 59:1549–1556.PubMedGoogle Scholar
  23. Gorelik, E., Duty, L., Anaraki, F., and Galili, U., 1995, Alterations of cell surface carbohydrates and inhibition of metastatic property of murine melanomas by alphα 1,3 galactosyltransferase gene transfection. Cancer Res. 55:4168–4173.PubMedGoogle Scholar
  24. Groth, C. G., Korsgren. O., Tibell, A., Tollemar. J., Moller. E., Bounder, J., Ostman, J., Reinholt, F. P., Hellerstrom, C., and Andersson. A., 1994, Transplantation of porcine fetal pancreas to diabetic patients. The Lancet 344:1402–1404.CrossRefGoogle Scholar
  25. Hakamori, S., Wang, S.-N., and Young Jr., W. W., 1977, Isoantigenic expression of Forssman glycolipid in human gastric and colonic mucosa: its possible identity with “A-like antigen” in human cancer., Proc.Nall.Acad.Sci.USA. 74:3023.Google Scholar
  26. Hancock, W. W., Blakely, M. L., Vanderwerf, W., and Bach, F. H., 1993, Rejection of Guinea Pig Cardiac Xenografts Post-Cobra Venom Factor Therapy Is Associated with Infiltration by Mononuclear Cells Secreting Interferon-Gamma and Diffuse Endothelial Activation. Trans-plant.Proc. 25:2932–2932.Google Scholar
  27. Koike, C., Kannagi. R., Takuma, Y., Akutsu. F., Hayashi. S., Hiraiwa. N., Kadomatsu. K., Muramatsu. T., Yamakawa. H., Nagai. T., Kobayashi. S., Okada. H., Nakashima. I., Uchida. K., Yokoyama, I., and Takagi, H., 1996, Introduction ofalpha(1.2)-fucosyltransferase and its effect on alpha-Gal epitopes in transgenic pig. Xenotransplantation 3:81–86.CrossRefGoogle Scholar
  28. Lesnikoski. B. A., Shaffer. D. A., Vanderwerf, W. J., Dalmasso. A. P., Soares, M P., Latinne, D., Bazin, H., Hancock. W. W., and Bach, F. H., 1995, Endothelial and host mononuclear cell activation and cytokine expression during rejection of pig-to-baboon discordant xenografts, Transplant Proc. 27:290–291.PubMedGoogle Scholar
  29. Levene, C., Levene, N. A., Buskila, D., and Manny, N., 1988. Red Cell Polyagglutination, Transfusion Medicine Reviews 2:176–185.PubMedCrossRefGoogle Scholar
  30. Leventhal, J. R., Dalmasso, A. P., Cromwell, J. W., Plan, J. L., Manivel, C. J., Bolman, R. M. III., and Matas, A. J., 1993. Prolongation of cardiac xenograft survival by depletion of complement, Transplantation 55:857–866.PubMedCrossRefGoogle Scholar
  31. McKenzie, I. F.C. Li, Y.Q., Patton, K. Thall, A. D., and Sandrin, M. S. A murine model for antibody mediated hyperacute rejection by Galα(1–3)Gal antibodies in Gal o/o mice, 1998, J. Exp. Med:ln Press.Google Scholar
  32. Mckenzie, I. F. C., Xing, P. X., Vaughan, H. A., Prenzoska. J., Dabkowski, P. L., and Sandrin, M. S., 1994, Distribution of the major xenoantigen (gal(α 1-3)gal) for pig to human xenografts, Transplant Immunology 2:81–86.PubMedCrossRefGoogle Scholar
  33. Meri, S., Manila, P., and Renoken, R., 1993, Regulation of CD59 expression on the human endothelial cell line EA.hy 926., Eur.J Immunol. 23:2511–2516.PubMedCrossRefGoogle Scholar
  34. Mirenda, V., Lemauff, B., Cassard, A., Huvelin, J. M., Boeffard, F., Faivre, A., Soulillou, J. P., and Anegon, I., 1997, Intact pig pancreatic islet function in the presence of human xenoreactive natural antibody binding and complement activation. Transplantation 63:1452–1462.PubMedCrossRefGoogle Scholar
  35. Neethling, F. A., Koren, E., Ye. Y., Richards, S. V., Kujundzic. M., Oriol. R., and Cooper. D. K. C. 1994, Protection of Pig Kidney (PK15) Cells from the Cytotoxic Effect of Anti-Pig Antibodies by alpha-Galactosyl Oligosaccharides, Transplantation 57:959–963.PubMedCrossRefGoogle Scholar
  36. Oriol, R., Barthod, F., Bergemer. A. M., Ye, Y., Koren. E., and Cooper. D. K. C. 1994, Monomorphic and polymorphic carbohydrate antigens on pig tissues: implications for organ xenotransplantation in the pig-to-human model. Transplant International 7:405–413.PubMedCrossRefGoogle Scholar
  37. Oriol, R., Ye, Y., Koren, E., and Cooper, D. K. C. 1993, Carbohydrate Antigens of Pig Tissues Reacting with Human Natural Antibodies as Potential Targets for Hyperacute Vascular Rejection in Pig-to-Man Organ Xenotransplantation, Transplantation 56:1433–1442.PubMedCrossRefGoogle Scholar
  38. Parker, W., Bruno, D., Holzknecht, Z. E., and Platt, J. L., 1994, Characterization and affinity isolation of xenoreactive human natural antibodies, J Immunol. 153:3791–3803.PubMedGoogle Scholar
  39. Pearse, M. J., Witort, E., Mottram, P., Han, W., Murray-Segal, L., Romanella, R., Salvaris, E., Handman, E., Goodman, D. J., and d’Apice, A. J. F., 1997, Anti-Gal antibody mediated allograft rejection in Gal-KO mice: A model of delayed xenograft rejection and accommodation, Transplantation:In press Google Scholar
  40. Platt, J.L., 1996, The immunological barriers to xenotransplantation, Crit Rev Immunol. 16:331–358.PubMedGoogle Scholar
  41. Romanella, M., Aminian, A., Adam, W. R., Pearse, M. J., and d’Apice, A. J. F., 1996, Involvement of both the classical and alternate pathways of complement in an ex vivo model of xenograft rejection, Transplantation, 63:1021–1025.CrossRefGoogle Scholar
  42. Rooney, I. A., Oglesby, T. J., and Atkinson, J. P., 1993, Complement in Human Reproduction: Activation and Control, Immunology Research 12:276–294.CrossRefGoogle Scholar
  43. Sandrin, M. S., Fodor, W. L., Cohney, S., Mouhtouris, E., Osman, N., Rollins, S. A., Squinto, S. P., and Mckenzie, I. F. C., 1996, Reduction of the major porcine xenoantigen Ga 1 alpha( 1,3)Gal by expression of alpha( 1,2)fucosyltransferase, Xenotransplantation 3:134–140.CrossRefGoogle Scholar
  44. Sandrin, M. S. and Mckenzie, I. F. C., 1994, Gal alpha( 1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies, Immunol Rev. 141:169–190.PubMedCrossRefGoogle Scholar
  45. Sandrin, M. S., Mouhtouris, E., Osman, N., Fodor, W. L., Squinto, S. P., and Mckenzie, I. F. C., 1995, Elimination of the major porcine xenoantigen, Galα(l,3) Gal. by expression of α(l,2) fucosyltransferase., Glycoconjugate J. 12:468–468.Google Scholar
  46. Sandrin, M. S., Vaughan, H. A., Dabkowski, P. L., and Mckenzie, I. F. C., 1993, Anti-pig IgM antibodies in human serum react predominantly with Gal(α1–3)Gal epitopes., Proc.Natl.Acad. Sci.USA. 90:11391–11395.PubMedCrossRefGoogle Scholar
  47. Satake, M., Kawagishi. N., Rydberg, L., Samuelsson, B. E., Tibell, A., Groth, C. G., and Moller, E., 1994, Limited specificity of xenoantibodies in diabetic patients transplanted with fetal procine islet cell clusters. Main antibody reactivity against α-linked galactose-containing epitopes, Xenotransplantation 1:89–101.CrossRefGoogle Scholar
  48. Sharma, A., Okabe, J., Birch, P., Mcclellan, S. B., Martin, M. J., Platt, J. L., and Logan, J. S., 1996, Reduction in the level of Gal(alphα 1,3)Gal in transgenic mice and pigs by the expression of an al-pha(l,2)fucosyltransferase, Proc.Natl.Acad.Sci.USA, 93:7190–7195.PubMedCrossRefGoogle Scholar
  49. Shinkel, T. A., Chen, C. G., Salvaris, E., Henion, T. R., Barlow, H., Galili, U., Pearse, M. J., and d’Apice, A. J., 1997, Changes in cell surface glycosylation in alphα 1,3-galactosyltransferase knock out and alpha 1,2-fucosyltransferase transgenic mice, Transplantation 64:197–204.PubMedCrossRefGoogle Scholar
  50. Shur, B. D. and Hall, N. G., 1982, A Role for Mouse Sperm Surface Galactosyltransferase in Sperm Binding to the Egg Zona Pellucida, The Journal of Cell Biology 95:574–579.PubMedCrossRefGoogle Scholar
  51. Tanabe K, Takahashi K, and Sonda K, 1998. ABO-incompatible liver kidney donor transplantation:results and immunological aspects. Transplantation Proceedings 27:1020–1023.Google Scholar
  52. Tange, M. J., Tearle, R. G., Aminian, A., Romanella, M., Adam, W. R., Pearse, M. J., and d’Apice, A. J. F., 1997, Demonstration of the functional importance of the Gal epitope in an ex vivo model of xenotransplantation, Xenotransplantation. 4:20–24.CrossRefGoogle Scholar
  53. Tearle, R. G., Tange, M. J., Zannettino, Z. L., Katerelos, M., Shinkel, T. A., Vandenderen, B. J. W., Lonie, A. J., Lyons, I., Nottle, M. B., Cox, T., Becker, C., Peura, A. M., Wigley, P. L., Crawford, R. J., Robins, A. J., Pearse, M. J., and d’Apice, A. J. F., 1996, The α-1,3-galactosyltransferase knockout mouse — Implications for xenotransplantation, Transplantation 61:13–19.PubMedCrossRefGoogle Scholar
  54. Thall, A. D., Maly, P., and Lowe, J. B., 1995, Oocyte Gal alpha 1,3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse, Joornal of Biological Chemistry 270:21437–21440.CrossRefGoogle Scholar
  55. Thall, A. D., Murphy, H. S., and Lowe, J. B., 1996, alpha 1,3-Galactosyltransferase-deficient mice produce naturally occurring cytotoxic anti-Gal antibodies, Transplant Proc. 28:556–557.PubMedGoogle Scholar
  56. Thurner, M., Rusconi. S., and Berger. E. G., 1993. Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome., J.Clin.Invest. 91:2103–2110.CrossRefGoogle Scholar
  57. Vaughan, H. A., Loveland. B. E.,and Sandrin, M. S., 1994. Gal alpha( 1,3 )Gal is the major xenoepitope expressed on pig endothelial, cells recognized by naturally occurring cytotoxic human antibodies. Transplantation 58:879–882.PubMedCrossRefGoogle Scholar
  58. West, J. D. and Fisher. G., 1985, Inherited cataracts in inbred mice., Genetic Research. 46:45–56.Google Scholar
  59. Yang, Y-C, deGoma, E., Ohdan, H., Bracy, J., Xu, Y., lacomini, J., Thall, A.D., and Sykes. M., 1998. Tolerization of anti-Galα1.3Gal natural antibody-forming B cells by induction of mixed chimaerism. Journal of Experimental Medicine 187:1335–1342.PubMedCrossRefGoogle Scholar
  60. Young Jr., W. W., Hakamori, S., and Levine, P., 1979. Characterization of anti-Forssman (anti-Fs) antibodies in human sera: their specificity and possible changes in patients with cancer., J. Immunol. 123: 92.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Martin J. Pearse
    • 1
  • Peter J. Cowan
    • 1
  • Trixie A. Shinkel
    • 1
  • Choa-Guang Chen
    • 1
  • Anthony J. F. d’Apice
    • 1
  1. 1.Immunology Research CentreSt Vincent’s Hospital MelbourneFitzroyAustralia

Personalised recommendations