Advertisement

Evolution of α1,3Galactosyltransferase and of the α-Gal Epitope

  • Uri Galili
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 32)

Abstract

Most of the genes studied in humans have homologues in other mammals; however, theα1,3galactosyltransferase (α1,3GT) gene represents a unique exception. Whereas it is highly active in nonprimate mammals, prosimians and New World monkeys (i.e., monkeys of South America), producing one of the most abundant cell surface carbohydrate epitopes, the epitope Galα1–3Galβ1α4GlcNAc-R (termed the α-gal or α-galactosyl epitope), this gene is completely inactive in Old World primates (i.e., humans, apes and Old World monkeys). As discussed below, the inactivation of α1,3GT in ancestral primates was likely to be associated with a catastrophic evolutionary event that led primates of the Old World (i.e., primates of Asia and Africa) into almost complete extinction. Because of this event, humans, apes and Old World monkeys produce very large amounts of a natural antibody against the α-gal epitope. This antibody, termed anti-Gal, constitutes 1% of circulating immunoglobulins and it prevents transplantation of organs or tissues from nonprimate mammals (e.g., pigs) into humans because it readily binds to the α-gal epitopes on such xenografts. It is impossible to determine the actual evolutionary events which have led to inactivation of the α1,3GT gene and suppression of α-gal epitope expression in ancestral Old World primates. However, information on the expression of this epitope in various species, the structure of the α1,3GT pseudogene in primates and the fossil record of primates, enable us to speculate on both the evolutionary period in which α1,3GT gene inactivation occurred, as well as possible causes for this event.

Keywords

Blood Group Fossil Record World Monkey Carbohydrate Chain Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, I.C., Ferguson, M.A., Schenkman, S., and Travassos, L.R., 1994. Lytic anti-α-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanozoma cruzi, Biochem. J. 304:793–802.Google Scholar
  2. Almeida, I.C., Milani, S.R., Gorin, A.J., and Travassos, L.R., 1991, Complement mediated lysis of Trypanosoma cruzi trypomastigotes by human anti α-galactosyl antibodies. J. Immunol. 146:2394–2401.PubMedGoogle Scholar
  3. Alvarado, C.G., Cotterell, A.H., McCurry, K.R., Collins, B.H., Magee, J.C., Berthold, J., Logan, J.S., and Platt, J.L., 1995, Variation in the level of xenoantigen expression in porcine organs. Transplantation 59:1589–1596.PubMedGoogle Scholar
  4. Andrews, P., 1981, Species diversity and diet in monkeys and apes during the Miocene. In: Aspects of human evolution, Ed., Stringer, C.B., pp. 25–61.Google Scholar
  5. Andrews, P., 1992, Evolution and environment in the hominoidea. Nature 360:641–646.PubMedCrossRefGoogle Scholar
  6. Auchincloss, H., 1988, Xenogeneic transplantation. Transplantation 45:1–20.CrossRefGoogle Scholar
  7. Avila, J.L., Rojas, M., and Galili, U., 1989, Immunogenic Galα1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J. Immunol. 142:2828–2834.PubMedGoogle Scholar
  8. Bäcker, A.E., Holgersson, J., Samuelsson, B.E., and Karlsson, H., 1998, Rapid and sensitive GC/MS characterization of glycolipid released Galα 1,3Gal-terminated oligosaccharides from small organ specimens of a single pig. Glycobiology 8:33–545.CrossRefGoogle Scholar
  9. Basu, M., and Basu, S., 1973, Enzymatic synthesis of blood group related pentaglycosyl ceramide by an α-galactosyltransferase. J. Biol. Chem. 248:1700–1706.PubMedGoogle Scholar
  10. Betteridge, A., and Watkins, W.M., 1983, Two α-3-D galactosyltransferases in rabbit stomach mucosa with different acceptor substrate specificities. Eur. J. Biochem. 132:29–35.PubMedCrossRefGoogle Scholar
  11. Blake, D.D., and Goldstein, I.J.,1981, An α-D-galactosyltransferase in Ehrlich ascites tumor cells: Biosynthesis and characterization of a trisaccharide (α-D-galactose(1–3)-iV-acetyllactosamine). J. Biol. Chem. 256:5387–5393.PubMedGoogle Scholar
  12. Blanken, W.M., and van den Eijnden, D.H., 1985, Biosynthesis of terminal Galα 1–3 Galβ 1–4GlcNAc-R oligosaccharide sequence on glycoconjugates: Purification and acceptor specificity of a UDP-Gal:N-acetyllactosamine α1, 3galactosyltransferase. J. Biol. Chem. 260:12972–12934.Google Scholar
  13. Chien, j.L., Li, S.C., and Li. Y.T., 1979. Isolation and characterization of a heptaglycosylceramide from bovine erythrocyte membrane. J. Lipid Res. 20:669–672.PubMedGoogle Scholar
  14. Couto, A.S., Conclaves, M.F., Colli, W., and de Lederkremer. R.M., 1990, The N-linked carbohydrate chain of the 85-kilodalton glycoprotein from Trypanosoma cruzi trypmastigotes contains sialyl, fucosyl and galactosyl (α 1–3) galactose units. Molec.Biochem.Parasitrol. 39:101–107.CrossRefGoogle Scholar
  15. Cummings, R.D., and Kornfeld. S., 1984, The distribution of repeating (Galβ1→4GlcNAcβ1→3) sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW 147 and PHA 2.1. J. Biol. Chem. 259:6253–6260, 1984.PubMedGoogle Scholar
  16. Cummings, R.D., and Mattox, S.A., 1988, Retinoic acid-induced differentiation of the mouse teratocacinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose: β-D-galctosyl-α1,3-galactosyltrainsferase, J. Biol. Chem. 263:511–519.PubMedGoogle Scholar
  17. DeThe, G., 1980, Role of Epstein-Barr virus in human diseases: Infectious mononucleosis, Burkitt’s lymphoma and nasopharyngeal carcinoma. In: Viral Oncology, Ed., Klein, G. Raven Press, New York, pp. 169–197.Google Scholar
  18. Eckhardt, A.E., and Goldstein, I.J., 1983, Isolation and characterization of α-galactosyl containing glycopeptides from Ehrlich ascites tumor cells. Biochemistry 22:5290–5303.PubMedCrossRefGoogle Scholar
  19. Egge, H., Kordowicz, M., Peter-Katalinic, J., and Hanfland, P., 1985, Immunochemistry of l/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes. J. Biol. Chem. 260:4927–4935.PubMedGoogle Scholar
  20. Elices, M.J., Blake, D.A, and Goldstein, I.J., 1986, Purification and characterization of a UDP-Gal: betα-D-Gal (l,4)-D-GlcNAc α1,3galactoysltransferase from Ehrlich ascites tumor cells, J. Biol. Chem. 261:6064–6072.PubMedGoogle Scholar
  21. Eto. T., Iichikawa, Y., Nishimura. K., Ando. S., and Yamakawa. T., 1968. Chemistry of lipids of the posthemolytic residue or stroma of erythroeytes. XVI. Occurance of ceramide pentasaccharide in the membrane of erythroeytes and reticulocytes in rabbit. J. Biochem. (Tokyo) 64:205–213.Google Scholar
  22. Frank, A., Andeman, W.A., and Miller, G., 1976. Epstein-Barr virus and nonhuman primates. Natural and experimental infection. Adv. Cancer Res. 23:171–201.PubMedCrossRefGoogle Scholar
  23. Galili, U., 1989, Abnormal expression ofα-galactosyl epitopesin man: A trigger for autoimmune processes? Lancet ii:358–361.CrossRefGoogle Scholar
  24. Galili, U., 1997, The α-galactosyl epitope (Galα 1–3Galβ 1–4GlcNAc-R) and the natural anti-Gal antibody. In: Molecular Biology and Evolution of Blood Groups and MHC Antigens in Primates, Eds., Socha. W.W., and Blancher, A. Springer Verlag, pp. 236–253.Google Scholar
  25. Galili, U., and Andrews, P., 1995. Suppression ofα-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: A major evolutionary event in ancestral Old World primates. J. Human Evolution 29:433–442.CrossRefGoogle Scholar
  26. Galili, U., Basbaum. C.B., Shohet. S.B., Buehler. J., and Macher, B. A., 1987a. Identification of erythrocyte Ga1α1–3Gal glycosphingolipids with a mouse monoclonal antibody. J. Biol. Chem. 262:4683–4687.PubMedGoogle Scholar
  27. Galili, U., Buehler, J., Shohet. S.B., and Macher, B. A., 1987b, The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J. Exp. Med. 165:693–704.PubMedCrossRefGoogle Scholar
  28. Galili. U., Clark. M.R., Shohet. S.B., Buehler, J., and Macher. B.A., 1987c, Evolutionary relationship between the anti-Gal antibody and the Galα!-3Gal epitope in primates. Proc. Nail. Acad. Sci. USA 84:1369–1373.CrossRefGoogle Scholar
  29. Galili, U., LaTemple. D.C., and Radic. M.Z., 1998. A sensitive assay for measuring α-gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation 65:1 129–1132.Google Scholar
  30. Galili, U., LaTemple. D.C., Walgenbach. A.W., and Stone. K.R., 1997, Porcine and bovine cartilage transplants in cynomolgus monkey: II. Changes in anti-Gal response during chronic rejection. Transplantation 63:646–651.PubMedCrossRefGoogle Scholar
  31. Galili, U., Macher, B. A., Buehler. J., and Shohet, S.B., 1985. Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1–3)-linked galactose residues. J. Exp. Med. 162:573–582.PubMedCrossRefGoogle Scholar
  32. Galili, U., Mandrell, R.E., Hamadeh. R.M., Shohet, S.B., and Griffis. J.M., 1988a. Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56:1730–1737.PubMedGoogle Scholar
  33. Galili, U., Rachmilewitz, E. A., Peleg. A., and Flechner. I., 1984. A unique natural human IgG antibody with anti-α-galactosyl specificity. J. Exp. Med. 160:1519–1531.PubMedCrossRefGoogle Scholar
  34. Galili, U., Repik. P.M., Anaraki. F., Mozdzanowska. K., Washko. G., and Gerhard, W., 1996, Enchancement of antigen presentation of influenza virus hemagglutinin by the natural anti-Gal antibody. Vaccine: 321–328.Google Scholar
  35. Galili, U., Shohet, S.B., Kobrin, E., Stults, C.L.M., and Macher, B.A., 1988b, Man, apes, and Old World monkeys differ from other mammals in the expression ofα-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263:17755–17762.PubMedGoogle Scholar
  36. Galili, U., and Swanson, K.,1991, Gene sequences suggest inactivation of α 1,3 galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Natl. Acad. Sci. USA 88:7401–7404.PubMedCrossRefGoogle Scholar
  37. Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., and Groth, C.G., 1995, Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 59:1549–1556.PubMedGoogle Scholar
  38. Good, A.H., Cooper, D.C.K., Malcolm, A.J., Ippolito, R.M., Koren. E., Neethling, F.A., Ye, Y., Zuhdi, N., and Lamontage, L.R., 1992, Identification of carbohydrate structures which bind human anti-porcine antibodies: implication for discordant xenografting in man. Transplant. Proc. 24:559–562.PubMedGoogle Scholar
  39. Gowda, D.C., Petrella, E.C., Raj, T.T., Bredehorst, R., and Vogel, C.W.,1994, Immunoreactivity and function of oligosaccharides in cobra venom factor. J. Immunol. 152:2977–2986.PubMedGoogle Scholar
  40. Gowda, D.C., Schultz, M., Bredehorst, R., and Vogel, C.W.,1992, Structure of the major oligosaccharide of cobra venom factor. Mol. Immunol. 29:335–344.PubMedCrossRefGoogle Scholar
  41. Hamadeh, R.M., Jarvis, G.A., Galili, U., Mandrell, R.E., Zhou, P., and Griffis. J.M., 1992, Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J. Clin. Invest. 89:1223.PubMedCrossRefGoogle Scholar
  42. Hanto, D.W., Frizzera, G., Gajl-Plczalska, K.J., Sakamoto, K., Purtilo, D.T., Balfour, H.H., Simmons. R.L., and Najarian, J.S., 1982, Epstein-Barr virus induced B-cell lymphoma after renal transplantation. N. Engl. J. Med. 306:913–918.PubMedCrossRefGoogle Scholar
  43. Hendricks, S.P., He, P., Stults, C.L., and Macher, B.A., 1990, Regulation of the expression of Galα 1–3 Galβ 1–4GlcNAc glycosphingolipids in kidney, J. Biol. Chem. 265:17621–17626.PubMedGoogle Scholar
  44. Henion, T.R., Macher, B.A., Anaraki, F., and Galili, U., 1994. Defining the minimal size of catalytically active primate α1,3galactosyltransferase: Structure function studies on the recombinant truncated enzyme. Glycobiology 4:193–201.PubMedCrossRefGoogle Scholar
  45. Joziasse, D.H., Shaper, J.H., Jabs, E.W., and Shaper, N.L., 1991, Characterization of an α1–3galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene, J. Biol. Chem. 266:6991–6998.PubMedGoogle Scholar
  46. Joziasse, D.H., Shaper. N.L., Kim, D., Van den Eijnden. D.H., and Shaper. J.H., 1992. Murine α1.3-galactosyltransferase. A single gene locus specifies four isoforms of the enzyme by alternative splicing, J. Biol. Chem. 267:5534–5541.PubMedGoogle Scholar
  47. Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.H., and Shaper, N.L., 1989, Bovine α1–3galactosyltransferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J. Biol. Chem. 264:14290–14297.PubMedGoogle Scholar
  48. Kimura, M., 1983, The neutral theory of molecular evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  49. Krivan, H.C., Clark, G.F., Smith, D.F., and Wilkins, D.T., 1986, Cell surface binding site for Clostridium difficile enterotoxin: Evidence of a glycoconjugate containing the sequence Galα1–3Galβl-4GlcNAc. Infect. Immun. 53:573–581.PubMedGoogle Scholar
  50. Koop, B.F., Goodman, M., Xu, P., Chan, K., and Slighton. J.L., 1986, Primate η-globin DNA sequences and man’s place among great apes. Nature 319:234–238.PubMedCrossRefGoogle Scholar
  51. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54:631–634.PubMedCrossRefGoogle Scholar
  52. Larsen, R.D., Rajan, V.P., Ruff, M., Kukowskα-Latallo, J., Cummings, R.D., and Lowe, J.B., 1989, Isolation of a cDNA encoding murine UDP galactose: βD-galactosyl-1,4-N-acetyl-D-glucosaminide α1,3-galactosyltransferase: Expression cloning by gene transfer. Proc. Natl. Acad.Sci. USA 86:8227–8231.PubMedCrossRefGoogle Scholar
  53. Larsen, R.D., Riverα-Marrero, C.A., Ernst, L.K., Cummings, R.D., and Lowe, J.B., 1990, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Galβ-D-Gal(l,4)-D-GlcNAca(l,3)galactosyltransferasecDNA. J. Biol. Chem. 265:7055–7062.PubMedGoogle Scholar
  54. LaTemple, D.C., and Galili, U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α-galactosyltransferase. Xenotransplantalion. in press.Google Scholar
  55. Macher, B.A., and Sweeley, C.C., 1978, Glycosphingolipids: Structure, biological source and properties. Methods Enzymol. 50:236–251.PubMedCrossRefGoogle Scholar
  56. Mourant, A.E., Kopéc, A.C., and Domaniewskα-Sobczak, O., 1976, The Distribution of Blood Groups and Other Polymorphisms, Vol. 1, 2nd edition. Oxford Press, p. 1050.Google Scholar
  57. Oriol, R., Candelier, J.J., Taniguchi, S., Peters, L., and Cooper, D.K., 1996, Major oligosaccharide epitopes found in tissues of 23 animal species, potential donors for organ xenotransplantation. Transplant. Proc. 28:794.PubMedGoogle Scholar
  58. Pereira. M., Rohr. P.J.A., Langyel. I., and Barretto. O.C.O.P., 1984. Os grupos sanguineos ABO em esqueletos pré-históricos de aborigines de Ilha de Santa Catarina. Brasil. Cienca e Cultura 36:1597–1599 (in Portuguese, abstract in English).Google Scholar
  59. Pilbeam. D., 1984. The decent of hominoids and hominids. Sci. Am. March: 84–95.Google Scholar
  60. Pothoulakis. C. Galili. U., Castagliuolo. I., Kelly, S., Nikulasson. P.K., Brasitus. T.A., and Lamont. J.T., 1996. Human anti-Gal IgG binds to the same receptors and mimics the effects of C. difficile Toxin A in rat colon. Gastroenterology 98:641–649.Google Scholar
  61. Repik, P.M., Strizki. J.M., and Galili. U., 1994. Differential host dependent expression of α-galactosyl epitopes on viral glycoproteins: A study of eastern equine encephalitis virus as a model. J. General Virol 75:1177–1181.CrossRefGoogle Scholar
  62. Rother. R.P., Fodor. W.L., Springhom. J.P., Birks. C.W., Setter. E., Sandrin. M.S., Squinto. S.P., and Rollins. S.A., 1995. A novel mechanism of retrovirus inactivation in human serum mediated by anti-α-galactosyl natural antibody. J. Exp. Med. 182:1345–1355.PubMedCrossRefGoogle Scholar
  63. Rouvolo. M., Disotell. T.R., Allard. M.W., Brown. W.M., and Honeycutt. R.L., 1991. Resolution of the African hominoid trichotomy by the use of a mitochondrial gene sequence Proc. Natl. Acad. Sci. USA 88:1570–1574.CrossRefGoogle Scholar
  64. Salzano. F.M., 1957. The blood groups of South American Indians. Am.J. Phys. Anthropol. 555–579.Google Scholar
  65. Sandrin, M., Vaughan. H.A., Dabkowski. P.L., and McKenzie. I.F.C., 1993. Anti-pig IgM antibodies in human serum react predominantly with Galα1–3Gal epitopes. Proc. Natl. Aead. Sci. USA 90:11391–11395.CrossRefGoogle Scholar
  66. Santer, U.V., DeSantis. R., Hard, K.J., van Kuik. J.A., Vliegenthart. J.F.G., Won, B., and Glick, M.C., 1989. N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. Eur. J. Bioehem. 181:249–260.CrossRefGoogle Scholar
  67. Schachter. H., and Roseman. S., 1980. Mammalian glycosyltransferases. Their role in the synthesis and function of complex carbohydrates and glycolipids. In: The Biochmistry of Glycoproteins and Proteoglycans. Ed., Lennarz, W.J., New York. Plenum, pp. 85–160.Google Scholar
  68. Shaper. N.L., Lin. S.P., Joziasse. D.H., Kim. D.Y., and Yang-Feng. T.L., 1992, Assignment of two human α1.3galactosyltransferase gene sequences (GGTA1 and GGTA1 P) to chromosome 9q33–q34 and 12ql4–ql5. Genomies 12:613–615.CrossRefGoogle Scholar
  69. Smith, D.F., Larsen. R.D., Mattox, S., Lowe. J.B., and Cummings. R.D., 1990. Transfer and expression of a murine UDP-Gal. β-D-Gal-α1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the α1,3-galactosyltransferase and the endogenous α2,3-sialytransferase. J. Biol. Chem. 265:6225–6234.PubMedGoogle Scholar
  70. Spiro, R.G., and Bhoyroo. V.D., 1984. Occurance of α-D-galactosyl residues in the thyroglobulin from several species. Localization in the saccharide chains of the complex carbohydrate units. J. Biol. Chem. 259:9858–9866.PubMedGoogle Scholar
  71. Stellner, K., Saito. H., and Hakomori. S., 1973. Determination of aminosugar linkage in glycolipids by methylation. Aminosugar linkage of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch. Biochem. Biophys. 133:464–472.CrossRefGoogle Scholar
  72. Stone. K.R., Ayala, G., Goldstein, J., Hurst. R., Walgenbach. A., and Galili. U., 1998, Porcine cartilage transplants in cynomolgus monkey: 111. Transplantation of α-galactosidase treated porcine cartilage. Transplantation 65:1577–1583.PubMedCrossRefGoogle Scholar
  73. Takeuchi, Y., Porter, C.D., Strahan. K.M., Preece. A.F., Gustafsson, K., Cosset, F.L., Weiss, R.A., Collins, M.K., 1996. Sensitization of cells and retroviruses to human serum by (α1–3) galactosyltransferase. Nature 379:85–88.PubMedCrossRefGoogle Scholar
  74. Teale, R.G., Tange. M.J., Zannettino, Z.L., Katerelos. M., Shinkel, T.A., Van Denderen, B.J., Lonie. A.J., Lyons. I., Nottle. M.B., Cox. T., Becker, C. Peura. A.M., Wigley. P.L., Crawford. R.J., Robins, A.J., Pearse. M.J., and d-Apice. A.J., 1996, The α1.3-galactosyltransferase knockout mouse. Implications for xenotransplantation. Transplantation 61:13–19.CrossRefGoogle Scholar
  75. Thall, A., Etienne-Decerf, J., Winand, R., and Galili, U., 1991, The α-galactosyl epitope on mammalian thyroid cells. Acta Endocrin. 124:692–699.Google Scholar
  76. Thall, A.D., Maly, P., and Lowe, J.B., 1995, Oocyte Galα 1–3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270:21437–21442.PubMedCrossRefGoogle Scholar
  77. Thall, A., Murphy, H., and Lowe, J.B., 1996, al, 3galactosyltransferase deficient mice produce natural anti-Gal antibodies. Transplant. Proc. 28:561–562.Google Scholar
  78. Umeura, K., Yuzawa, M., and Taketomi, T., 1978, Characterization of glycolipids in bovine erythrocyte membrane. J. Biochem. (Tokyo) 83:463.Google Scholar
  79. Van den Eijnden, D.H., Blanken, W.M., Winterwerp, H., and Schiphorst, W.E., 1983, Identification and characterization of an UDP-Gal: N-acetyllactosaminide α1, 3-galactosyltransferase in calf thymus, Eur. J. Biochem. 134:523–530.PubMedCrossRefGoogle Scholar
  80. Welsh, R.M., O’Donnell, C.L., Reed, D.J., and Rother, R.P.,1988, Evaluation of the Galα1–3Gal epitope as a host modification factor eliciting natural humoral immunity to enveloped viruses. J. Virol. 72:4650–4656.Google Scholar
  81. Wilson, A.C., 1985, The molecular basis of evolution. Sci. Amer. Oct:l64–173.Google Scholar
  82. Wilson, A.C., Carlson, S.S., and White, T.J., 1977, Molecular evolution. Annu. Rev. Biochem 46:573–639.PubMedCrossRefGoogle Scholar
  83. Wood, C., Kabat, E.A., Murphy, L.A., and Goldstein, I.J., 1979, Immunochemical studies of the combining sites of two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys. 198:1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Uri Galili
    • 1
  1. 1.Department of Microbiology and ImmunologyMCP Hahnemann School of MedicinePhiladelphiaUSA

Personalised recommendations