Skip to main content

Evolution of α1,3Galactosyltransferase and of the α-Gal Epitope

  • Chapter
α-Gal and Anti-Gal

Part of the book series: Subcellular Biochemistry ((SCBI,volume 32))

Abstract

Most of the genes studied in humans have homologues in other mammals; however, theα1,3galactosyltransferase (α1,3GT) gene represents a unique exception. Whereas it is highly active in nonprimate mammals, prosimians and New World monkeys (i.e., monkeys of South America), producing one of the most abundant cell surface carbohydrate epitopes, the epitope Galα1–3Galβ1α4GlcNAc-R (termed the α-gal or α-galactosyl epitope), this gene is completely inactive in Old World primates (i.e., humans, apes and Old World monkeys). As discussed below, the inactivation of α1,3GT in ancestral primates was likely to be associated with a catastrophic evolutionary event that led primates of the Old World (i.e., primates of Asia and Africa) into almost complete extinction. Because of this event, humans, apes and Old World monkeys produce very large amounts of a natural antibody against the α-gal epitope. This antibody, termed anti-Gal, constitutes 1% of circulating immunoglobulins and it prevents transplantation of organs or tissues from nonprimate mammals (e.g., pigs) into humans because it readily binds to the α-gal epitopes on such xenografts. It is impossible to determine the actual evolutionary events which have led to inactivation of the α1,3GT gene and suppression of α-gal epitope expression in ancestral Old World primates. However, information on the expression of this epitope in various species, the structure of the α1,3GT pseudogene in primates and the fossil record of primates, enable us to speculate on both the evolutionary period in which α1,3GT gene inactivation occurred, as well as possible causes for this event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, I.C., Ferguson, M.A., Schenkman, S., and Travassos, L.R., 1994. Lytic anti-α-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanozoma cruzi, Biochem. J. 304:793–802.

    CAS  Google Scholar 

  • Almeida, I.C., Milani, S.R., Gorin, A.J., and Travassos, L.R., 1991, Complement mediated lysis of Trypanosoma cruzi trypomastigotes by human anti α-galactosyl antibodies. J. Immunol. 146:2394–2401.

    PubMed  CAS  Google Scholar 

  • Alvarado, C.G., Cotterell, A.H., McCurry, K.R., Collins, B.H., Magee, J.C., Berthold, J., Logan, J.S., and Platt, J.L., 1995, Variation in the level of xenoantigen expression in porcine organs. Transplantation 59:1589–1596.

    PubMed  CAS  Google Scholar 

  • Andrews, P., 1981, Species diversity and diet in monkeys and apes during the Miocene. In: Aspects of human evolution, Ed., Stringer, C.B., pp. 25–61.

    Google Scholar 

  • Andrews, P., 1992, Evolution and environment in the hominoidea. Nature 360:641–646.

    Article  PubMed  CAS  Google Scholar 

  • Auchincloss, H., 1988, Xenogeneic transplantation. Transplantation 45:1–20.

    Article  Google Scholar 

  • Avila, J.L., Rojas, M., and Galili, U., 1989, Immunogenic Galα1–3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J. Immunol. 142:2828–2834.

    PubMed  CAS  Google Scholar 

  • Bäcker, A.E., Holgersson, J., Samuelsson, B.E., and Karlsson, H., 1998, Rapid and sensitive GC/MS characterization of glycolipid released Galα 1,3Gal-terminated oligosaccharides from small organ specimens of a single pig. Glycobiology 8:33–545.

    Article  Google Scholar 

  • Basu, M., and Basu, S., 1973, Enzymatic synthesis of blood group related pentaglycosyl ceramide by an α-galactosyltransferase. J. Biol. Chem. 248:1700–1706.

    PubMed  CAS  Google Scholar 

  • Betteridge, A., and Watkins, W.M., 1983, Two α-3-D galactosyltransferases in rabbit stomach mucosa with different acceptor substrate specificities. Eur. J. Biochem. 132:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Blake, D.D., and Goldstein, I.J.,1981, An α-D-galactosyltransferase in Ehrlich ascites tumor cells: Biosynthesis and characterization of a trisaccharide (α-D-galactose(1–3)-iV-acetyllactosamine). J. Biol. Chem. 256:5387–5393.

    PubMed  CAS  Google Scholar 

  • Blanken, W.M., and van den Eijnden, D.H., 1985, Biosynthesis of terminal Galα 1–3 Galβ 1–4GlcNAc-R oligosaccharide sequence on glycoconjugates: Purification and acceptor specificity of a UDP-Gal:N-acetyllactosamine α1, 3galactosyltransferase. J. Biol. Chem. 260:12972–12934.

    Google Scholar 

  • Chien, j.L., Li, S.C., and Li. Y.T., 1979. Isolation and characterization of a heptaglycosylceramide from bovine erythrocyte membrane. J. Lipid Res. 20:669–672.

    PubMed  CAS  Google Scholar 

  • Couto, A.S., Conclaves, M.F., Colli, W., and de Lederkremer. R.M., 1990, The N-linked carbohydrate chain of the 85-kilodalton glycoprotein from Trypanosoma cruzi trypmastigotes contains sialyl, fucosyl and galactosyl (α 1–3) galactose units. Molec.Biochem.Parasitrol. 39:101–107.

    Article  CAS  Google Scholar 

  • Cummings, R.D., and Kornfeld. S., 1984, The distribution of repeating (Galβ1→4GlcNAcβ1→3) sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW 147 and PHA 2.1. J. Biol. Chem. 259:6253–6260, 1984.

    PubMed  CAS  Google Scholar 

  • Cummings, R.D., and Mattox, S.A., 1988, Retinoic acid-induced differentiation of the mouse teratocacinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose: β-D-galctosyl-α1,3-galactosyltrainsferase, J. Biol. Chem. 263:511–519.

    PubMed  CAS  Google Scholar 

  • DeThe, G., 1980, Role of Epstein-Barr virus in human diseases: Infectious mononucleosis, Burkitt’s lymphoma and nasopharyngeal carcinoma. In: Viral Oncology, Ed., Klein, G. Raven Press, New York, pp. 169–197.

    Google Scholar 

  • Eckhardt, A.E., and Goldstein, I.J., 1983, Isolation and characterization of α-galactosyl containing glycopeptides from Ehrlich ascites tumor cells. Biochemistry 22:5290–5303.

    Article  PubMed  CAS  Google Scholar 

  • Egge, H., Kordowicz, M., Peter-Katalinic, J., and Hanfland, P., 1985, Immunochemistry of l/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes. J. Biol. Chem. 260:4927–4935.

    PubMed  CAS  Google Scholar 

  • Elices, M.J., Blake, D.A, and Goldstein, I.J., 1986, Purification and characterization of a UDP-Gal: betα-D-Gal (l,4)-D-GlcNAc α1,3galactoysltransferase from Ehrlich ascites tumor cells, J. Biol. Chem. 261:6064–6072.

    PubMed  CAS  Google Scholar 

  • Eto. T., Iichikawa, Y., Nishimura. K., Ando. S., and Yamakawa. T., 1968. Chemistry of lipids of the posthemolytic residue or stroma of erythroeytes. XVI. Occurance of ceramide pentasaccharide in the membrane of erythroeytes and reticulocytes in rabbit. J. Biochem. (Tokyo) 64:205–213.

    CAS  Google Scholar 

  • Frank, A., Andeman, W.A., and Miller, G., 1976. Epstein-Barr virus and nonhuman primates. Natural and experimental infection. Adv. Cancer Res. 23:171–201.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., 1989, Abnormal expression ofα-galactosyl epitopesin man: A trigger for autoimmune processes? Lancet ii:358–361.

    Article  Google Scholar 

  • Galili, U., 1997, The α-galactosyl epitope (Galα 1–3Galβ 1–4GlcNAc-R) and the natural anti-Gal antibody. In: Molecular Biology and Evolution of Blood Groups and MHC Antigens in Primates, Eds., Socha. W.W., and Blancher, A. Springer Verlag, pp. 236–253.

    Google Scholar 

  • Galili, U., and Andrews, P., 1995. Suppression ofα-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: A major evolutionary event in ancestral Old World primates. J. Human Evolution 29:433–442.

    Article  Google Scholar 

  • Galili, U., Basbaum. C.B., Shohet. S.B., Buehler. J., and Macher, B. A., 1987a. Identification of erythrocyte Ga1α1–3Gal glycosphingolipids with a mouse monoclonal antibody. J. Biol. Chem. 262:4683–4687.

    PubMed  CAS  Google Scholar 

  • Galili, U., Buehler, J., Shohet. S.B., and Macher, B. A., 1987b, The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J. Exp. Med. 165:693–704.

    Article  PubMed  CAS  Google Scholar 

  • Galili. U., Clark. M.R., Shohet. S.B., Buehler, J., and Macher. B.A., 1987c, Evolutionary relationship between the anti-Gal antibody and the Galα!-3Gal epitope in primates. Proc. Nail. Acad. Sci. USA 84:1369–1373.

    Article  CAS  Google Scholar 

  • Galili, U., LaTemple. D.C., and Radic. M.Z., 1998. A sensitive assay for measuring α-gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation 65:1 129–1132.

    Google Scholar 

  • Galili, U., LaTemple. D.C., Walgenbach. A.W., and Stone. K.R., 1997, Porcine and bovine cartilage transplants in cynomolgus monkey: II. Changes in anti-Gal response during chronic rejection. Transplantation 63:646–651.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., Macher, B. A., Buehler. J., and Shohet, S.B., 1985. Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1–3)-linked galactose residues. J. Exp. Med. 162:573–582.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., Mandrell, R.E., Hamadeh. R.M., Shohet, S.B., and Griffis. J.M., 1988a. Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56:1730–1737.

    PubMed  CAS  Google Scholar 

  • Galili, U., Rachmilewitz, E. A., Peleg. A., and Flechner. I., 1984. A unique natural human IgG antibody with anti-α-galactosyl specificity. J. Exp. Med. 160:1519–1531.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., Repik. P.M., Anaraki. F., Mozdzanowska. K., Washko. G., and Gerhard, W., 1996, Enchancement of antigen presentation of influenza virus hemagglutinin by the natural anti-Gal antibody. Vaccine: 321–328.

    Google Scholar 

  • Galili, U., Shohet, S.B., Kobrin, E., Stults, C.L.M., and Macher, B.A., 1988b, Man, apes, and Old World monkeys differ from other mammals in the expression ofα-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263:17755–17762.

    PubMed  CAS  Google Scholar 

  • Galili, U., and Swanson, K.,1991, Gene sequences suggest inactivation of α 1,3 galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Natl. Acad. Sci. USA 88:7401–7404.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., and Groth, C.G., 1995, Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 59:1549–1556.

    PubMed  CAS  Google Scholar 

  • Good, A.H., Cooper, D.C.K., Malcolm, A.J., Ippolito, R.M., Koren. E., Neethling, F.A., Ye, Y., Zuhdi, N., and Lamontage, L.R., 1992, Identification of carbohydrate structures which bind human anti-porcine antibodies: implication for discordant xenografting in man. Transplant. Proc. 24:559–562.

    PubMed  CAS  Google Scholar 

  • Gowda, D.C., Petrella, E.C., Raj, T.T., Bredehorst, R., and Vogel, C.W.,1994, Immunoreactivity and function of oligosaccharides in cobra venom factor. J. Immunol. 152:2977–2986.

    PubMed  CAS  Google Scholar 

  • Gowda, D.C., Schultz, M., Bredehorst, R., and Vogel, C.W.,1992, Structure of the major oligosaccharide of cobra venom factor. Mol. Immunol. 29:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Hamadeh, R.M., Jarvis, G.A., Galili, U., Mandrell, R.E., Zhou, P., and Griffis. J.M., 1992, Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J. Clin. Invest. 89:1223.

    Article  PubMed  CAS  Google Scholar 

  • Hanto, D.W., Frizzera, G., Gajl-Plczalska, K.J., Sakamoto, K., Purtilo, D.T., Balfour, H.H., Simmons. R.L., and Najarian, J.S., 1982, Epstein-Barr virus induced B-cell lymphoma after renal transplantation. N. Engl. J. Med. 306:913–918.

    Article  PubMed  CAS  Google Scholar 

  • Hendricks, S.P., He, P., Stults, C.L., and Macher, B.A., 1990, Regulation of the expression of Galα 1–3 Galβ 1–4GlcNAc glycosphingolipids in kidney, J. Biol. Chem. 265:17621–17626.

    PubMed  CAS  Google Scholar 

  • Henion, T.R., Macher, B.A., Anaraki, F., and Galili, U., 1994. Defining the minimal size of catalytically active primate α1,3galactosyltransferase: Structure function studies on the recombinant truncated enzyme. Glycobiology 4:193–201.

    Article  PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, J.H., Jabs, E.W., and Shaper, N.L., 1991, Characterization of an α1–3galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene, J. Biol. Chem. 266:6991–6998.

    PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper. N.L., Kim, D., Van den Eijnden. D.H., and Shaper. J.H., 1992. Murine α1.3-galactosyltransferase. A single gene locus specifies four isoforms of the enzyme by alternative splicing, J. Biol. Chem. 267:5534–5541.

    PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, J.H., Van den Eijnden, D.H., Van Tunen, A.H., and Shaper, N.L., 1989, Bovine α1–3galactosyltransferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J. Biol. Chem. 264:14290–14297.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1983, The neutral theory of molecular evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Krivan, H.C., Clark, G.F., Smith, D.F., and Wilkins, D.T., 1986, Cell surface binding site for Clostridium difficile enterotoxin: Evidence of a glycoconjugate containing the sequence Galα1–3Galβl-4GlcNAc. Infect. Immun. 53:573–581.

    PubMed  CAS  Google Scholar 

  • Koop, B.F., Goodman, M., Xu, P., Chan, K., and Slighton. J.L., 1986, Primate η-globin DNA sequences and man’s place among great apes. Nature 319:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54:631–634.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, R.D., Rajan, V.P., Ruff, M., Kukowskα-Latallo, J., Cummings, R.D., and Lowe, J.B., 1989, Isolation of a cDNA encoding murine UDP galactose: βD-galactosyl-1,4-N-acetyl-D-glucosaminide α1,3-galactosyltransferase: Expression cloning by gene transfer. Proc. Natl. Acad.Sci. USA 86:8227–8231.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, R.D., Riverα-Marrero, C.A., Ernst, L.K., Cummings, R.D., and Lowe, J.B., 1990, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Galβ-D-Gal(l,4)-D-GlcNAca(l,3)galactosyltransferasecDNA. J. Biol. Chem. 265:7055–7062.

    PubMed  CAS  Google Scholar 

  • LaTemple, D.C., and Galili, U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α-galactosyltransferase. Xenotransplantalion. in press.

    Google Scholar 

  • Macher, B.A., and Sweeley, C.C., 1978, Glycosphingolipids: Structure, biological source and properties. Methods Enzymol. 50:236–251.

    Article  PubMed  CAS  Google Scholar 

  • Mourant, A.E., Kopéc, A.C., and Domaniewskα-Sobczak, O., 1976, The Distribution of Blood Groups and Other Polymorphisms, Vol. 1, 2nd edition. Oxford Press, p. 1050.

    Google Scholar 

  • Oriol, R., Candelier, J.J., Taniguchi, S., Peters, L., and Cooper, D.K., 1996, Major oligosaccharide epitopes found in tissues of 23 animal species, potential donors for organ xenotransplantation. Transplant. Proc. 28:794.

    PubMed  CAS  Google Scholar 

  • Pereira. M., Rohr. P.J.A., Langyel. I., and Barretto. O.C.O.P., 1984. Os grupos sanguineos ABO em esqueletos pré-históricos de aborigines de Ilha de Santa Catarina. Brasil. Cienca e Cultura 36:1597–1599 (in Portuguese, abstract in English).

    Google Scholar 

  • Pilbeam. D., 1984. The decent of hominoids and hominids. Sci. Am. March: 84–95.

    Google Scholar 

  • Pothoulakis. C. Galili. U., Castagliuolo. I., Kelly, S., Nikulasson. P.K., Brasitus. T.A., and Lamont. J.T., 1996. Human anti-Gal IgG binds to the same receptors and mimics the effects of C. difficile Toxin A in rat colon. Gastroenterology 98:641–649.

    CAS  Google Scholar 

  • Repik, P.M., Strizki. J.M., and Galili. U., 1994. Differential host dependent expression of α-galactosyl epitopes on viral glycoproteins: A study of eastern equine encephalitis virus as a model. J. General Virol 75:1177–1181.

    Article  CAS  Google Scholar 

  • Rother. R.P., Fodor. W.L., Springhom. J.P., Birks. C.W., Setter. E., Sandrin. M.S., Squinto. S.P., and Rollins. S.A., 1995. A novel mechanism of retrovirus inactivation in human serum mediated by anti-α-galactosyl natural antibody. J. Exp. Med. 182:1345–1355.

    Article  PubMed  CAS  Google Scholar 

  • Rouvolo. M., Disotell. T.R., Allard. M.W., Brown. W.M., and Honeycutt. R.L., 1991. Resolution of the African hominoid trichotomy by the use of a mitochondrial gene sequence Proc. Natl. Acad. Sci. USA 88:1570–1574.

    Article  Google Scholar 

  • Salzano. F.M., 1957. The blood groups of South American Indians. Am.J. Phys. Anthropol. 555–579.

    Google Scholar 

  • Sandrin, M., Vaughan. H.A., Dabkowski. P.L., and McKenzie. I.F.C., 1993. Anti-pig IgM antibodies in human serum react predominantly with Galα1–3Gal epitopes. Proc. Natl. Aead. Sci. USA 90:11391–11395.

    Article  CAS  Google Scholar 

  • Santer, U.V., DeSantis. R., Hard, K.J., van Kuik. J.A., Vliegenthart. J.F.G., Won, B., and Glick, M.C., 1989. N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. Eur. J. Bioehem. 181:249–260.

    Article  CAS  Google Scholar 

  • Schachter. H., and Roseman. S., 1980. Mammalian glycosyltransferases. Their role in the synthesis and function of complex carbohydrates and glycolipids. In: The Biochmistry of Glycoproteins and Proteoglycans. Ed., Lennarz, W.J., New York. Plenum, pp. 85–160.

    Google Scholar 

  • Shaper. N.L., Lin. S.P., Joziasse. D.H., Kim. D.Y., and Yang-Feng. T.L., 1992, Assignment of two human α1.3galactosyltransferase gene sequences (GGTA1 and GGTA1 P) to chromosome 9q33–q34 and 12ql4–ql5. Genomies 12:613–615.

    Article  CAS  Google Scholar 

  • Smith, D.F., Larsen. R.D., Mattox, S., Lowe. J.B., and Cummings. R.D., 1990. Transfer and expression of a murine UDP-Gal. β-D-Gal-α1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the α1,3-galactosyltransferase and the endogenous α2,3-sialytransferase. J. Biol. Chem. 265:6225–6234.

    PubMed  CAS  Google Scholar 

  • Spiro, R.G., and Bhoyroo. V.D., 1984. Occurance of α-D-galactosyl residues in the thyroglobulin from several species. Localization in the saccharide chains of the complex carbohydrate units. J. Biol. Chem. 259:9858–9866.

    PubMed  CAS  Google Scholar 

  • Stellner, K., Saito. H., and Hakomori. S., 1973. Determination of aminosugar linkage in glycolipids by methylation. Aminosugar linkage of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch. Biochem. Biophys. 133:464–472.

    Article  Google Scholar 

  • Stone. K.R., Ayala, G., Goldstein, J., Hurst. R., Walgenbach. A., and Galili. U., 1998, Porcine cartilage transplants in cynomolgus monkey: 111. Transplantation of α-galactosidase treated porcine cartilage. Transplantation 65:1577–1583.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Porter, C.D., Strahan. K.M., Preece. A.F., Gustafsson, K., Cosset, F.L., Weiss, R.A., Collins, M.K., 1996. Sensitization of cells and retroviruses to human serum by (α1–3) galactosyltransferase. Nature 379:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Teale, R.G., Tange. M.J., Zannettino, Z.L., Katerelos. M., Shinkel, T.A., Van Denderen, B.J., Lonie. A.J., Lyons. I., Nottle. M.B., Cox. T., Becker, C. Peura. A.M., Wigley. P.L., Crawford. R.J., Robins, A.J., Pearse. M.J., and d-Apice. A.J., 1996, The α1.3-galactosyltransferase knockout mouse. Implications for xenotransplantation. Transplantation 61:13–19.

    Article  Google Scholar 

  • Thall, A., Etienne-Decerf, J., Winand, R., and Galili, U., 1991, The α-galactosyl epitope on mammalian thyroid cells. Acta Endocrin. 124:692–699.

    CAS  Google Scholar 

  • Thall, A.D., Maly, P., and Lowe, J.B., 1995, Oocyte Galα 1–3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270:21437–21442.

    Article  PubMed  CAS  Google Scholar 

  • Thall, A., Murphy, H., and Lowe, J.B., 1996, al, 3galactosyltransferase deficient mice produce natural anti-Gal antibodies. Transplant. Proc. 28:561–562.

    Google Scholar 

  • Umeura, K., Yuzawa, M., and Taketomi, T., 1978, Characterization of glycolipids in bovine erythrocyte membrane. J. Biochem. (Tokyo) 83:463.

    Google Scholar 

  • Van den Eijnden, D.H., Blanken, W.M., Winterwerp, H., and Schiphorst, W.E., 1983, Identification and characterization of an UDP-Gal: N-acetyllactosaminide α1, 3-galactosyltransferase in calf thymus, Eur. J. Biochem. 134:523–530.

    Article  PubMed  Google Scholar 

  • Welsh, R.M., O’Donnell, C.L., Reed, D.J., and Rother, R.P.,1988, Evaluation of the Galα1–3Gal epitope as a host modification factor eliciting natural humoral immunity to enveloped viruses. J. Virol. 72:4650–4656.

    Google Scholar 

  • Wilson, A.C., 1985, The molecular basis of evolution. Sci. Amer. Oct:l64–173.

    Google Scholar 

  • Wilson, A.C., Carlson, S.S., and White, T.J., 1977, Molecular evolution. Annu. Rev. Biochem 46:573–639.

    Article  PubMed  CAS  Google Scholar 

  • Wood, C., Kabat, E.A., Murphy, L.A., and Goldstein, I.J., 1979, Immunochemical studies of the combining sites of two isolectins A4 and B4 isolated from Bandeiraea simplicifolia. Arch. Biochem. Biophys. 198:1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galili, U. (1999). Evolution of α1,3Galactosyltransferase and of the α-Gal Epitope. In: Galili, U., Avila, J.L. (eds) α-Gal and Anti-Gal. Subcellular Biochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4771-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4771-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7160-1

  • Online ISBN: 978-1-4615-4771-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics