Advertisement

Biosynthesis and Accumulation of Rosmarinic Acid in Plant Cell Cultures

  • Maike Petersen

Summary

Rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, is a natural compound occurring in many species of the Lamiaceae and Boraginaceae. It therefore also occurs in a number of well-known medicinal plants and spices. The biological activities of RA are described as antibacterial, antioxidative, antiviral and antiinflammatory; RA therefore contributes to the pharmacological and food-preserving qualities of these plants. Cell cultures of Coleus blumei can accumulate up to 20% of the cell dry weight as RA, when the culture medium is supplemented with high sucrose concentrations. The biosynthesis and accumulation of RA has been investigated in cell cultures of Coleus blumei and other RA-containing plants. The precursors phenylalanine and tyrosine are transformed to rosmarinic acid by eight enzymatic steps catalyzed by soluble enzymes and membrane-bound cytochrome P-450 monooxygenases. RA is stored in the vacuole and transported across the tonoplast by a carrier protein. The regulation of RA biosynthesis and accumulation on the enzyme as well as the gene level is studied in the model system Coleus blumei.

Keywords

Suspension Culture Sucrose Concentration Hairy Root Culture Rosmarinic Acid Plant Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiot, M. J.; Fleuriet, A.; Cheynier, V.; Nicolas, J. Phenolic compounds and oxidative mechanisms in fruit and vegetables. In Phytochemistry of Fruit and Vegetables; Tomás-Barberán, F. A., Robins, R. J., Eds.; Clarendon: Oxford, 1997; pp 51–85.Google Scholar
  2. Barlow, S. M. Toxicological aspects of antioxidants used as food additives. In Food Antioxidants; Hudson, B. J. F., Ed.; Elsevier: London, 1990; pp 253–307.CrossRefGoogle Scholar
  3. Brieskom, C.H. Salbei - seine Inhaltsstoffe und sein therapeutischer Wert. Z. Phytotherapie 1991, 12 61–69.Google Scholar
  4. Chaprin, N.; Ellis, B. E. Microspectrophotometric evaluation of rosmarinic acid accumulation in single cultured plant cells. Can. J. Bot. 1984, 62 2278–2282.CrossRefGoogle Scholar
  5. De-Eknamkul, W.; Ellis, B. E. Rosmarinic acid production and growth characteristics of Anchusa officinalis cell suspension cultures. Planta Med. 1984, 51 346–350.CrossRefGoogle Scholar
  6. De-Eknamkul, W.; Ellis, B. E. Effects of macronutrients on growth and rosmarinic acid formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep. 1985, 4,46–49.CrossRefGoogle Scholar
  7. De-Eknamkul, W.; Ellis, B. E. Effects of auxins and cytokinins on growth and rosmarinic acid formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep. 1985, 4 50–53.CrossRefGoogle Scholar
  8. De-Eknamkul, W.; Ellis, B. E. Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 1987, 26 1941–1946.CrossRefGoogle Scholar
  9. De-Eknamkul, W.; Ellis, B. E. Rosmarinic acid: production in plant cell cultures. In Biotechnology in Agriculture and Forestry Vol. 4 Medicinal and Aromatic Plants 1; Bajaj, Y. P. S., Ed.; Springer: Berlin, 1988; pp 310–329.Google Scholar
  10. Ellis, B. E.; Towers, G. H. N. Biogenesis of rosmarinic acid in Mentha. Biochem. J. 1970, 118 291–297.Google Scholar
  11. Frankel, E. N.; Huang, S. W.; Aeschbach, R.; Prior, E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Agric. Food Chem. 1996, 44 131–135.CrossRefGoogle Scholar
  12. Fukui, H.; Yazaki, K.; Tabata, M. Two phenolic acids from Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 1984, 23 2398–2399.CrossRefGoogle Scholar
  13. Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50 151–158.PubMedCrossRefGoogle Scholar
  14. Gertlowski, C.; Petersen, M. Influence of the carbon source on growth and rosmarinic acid production in suspension cultures of Coleus blumei. Plant Cell Tiss. Org. Cult. 1993, 34 183–190.CrossRefGoogle Scholar
  15. Häusler, E.; Petersen, M.; Alfermann, A. W. Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Z. Naturforsch 1991, 46c 371–376.Google Scholar
  16. Häusler, E.; Petersen, M.; Alfermann, A. W. Isolation of protoplasts and vacuoles from cell suspension cultures of Coleus blumei Benth. Plant Cell Rep. 1993, 12 510–5I2.CrossRefGoogle Scholar
  17. Hazegawa, T. Composite antioxidants. Jpn. Pat. 5,975–987; 1984.Google Scholar
  18. Heller R. Recherches sur la nutrition min,rale des tissus végétaux cultivés in vitro. Ann. Sci. Nat. Bot. Biol. Vég. 1953, 14 1–223.Google Scholar
  19. Hertog, M. G. L.; van Poppel, G.; Verhoeven, D. Potentially anticarcinogenic secondary metabolites from fruit and vegetables. In Phytochemistry of Fruit and Vegetables; Tomás-Barberán, F. A., Robins, R. J., Eds.; Clarendon: Oxford, 1997; pp 313–329.Google Scholar
  20. Hippolyte, I.; Marin, B.; Baccou, J. C.; Jonard, R. Influence du milieu d’entretien et de la concentration en saccharose sur la production d’acide rosmarinique par des suspensions cellulaires de Sauge (Salvia officinalis L.). C. R. Acad. Sci. Paris 1991, 313 365–371.Google Scholar
  21. Hippolyte, I.; Marin, B.; Baccou, J. C.; Jonard, R. Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep. 1992, 11 109–112.CrossRefGoogle Scholar
  22. Ho, C. T.; Ferraro, T.; Chen, Q.; Rosen, R. T.; Huang, M. T. Phytochemicals in teas and rosemary and their cancer-preventive properties. In Food Chemicals for Cancer Prevention II; Ho, C. T.; Osawa, T.; Huang, M. T.; Rosen, R. T., Eds.; American Chemical Society: Washington, DC, 1994; pp 2–19.CrossRefGoogle Scholar
  23. Ilieva, M.; Pavlov, A. Rosmarinic acid by Lavandula vera MM cell suspension: phosphorous effect. Biotechnol. Lett. 1996, 8 913–916.CrossRefGoogle Scholar
  24. Lamaison, J. L.; Petitjean-Freytet, C.; Carnat, A. Teneurs en acide rosmarinique, en dérives hydroxycinnamiques totaux et activité antioxydante chez les Apiacées, les Borraginacées et les Lamiacées médicinales. Ann. Pharm. Francaises 1990, 48 103–108.Google Scholar
  25. Lamaison, J. L.; Petitjean-Freytet, C.; Camat, A. Lamiacées médicinales à propriétés antioxydantes, sources potentielles d’acide rosmarinique. Pharm.A cta Hely. 1991 66 185–188.Google Scholar
  26. Lang, E.; Amelunxen, F.; Friedrich, H.; Hörster, H. Morphometrische und chemische Charakterisierung der Bildungs-und Metabolisierungskinetik von “Lamiaceengerbstoffen” in Ocimum basilicum-Zellsuspensionskulturen. Fun J. Cell Biol. 1979 19 67–72.Google Scholar
  27. Leake, D. S. The possible role of antioxidants in fruit and vegetables in protecting against coronary heart disease. In Phytochemistry of Fruit and Vegetables; Tomás-Barberán, F. A., Robins, R. J., Eds.; Clarendon: Oxford, 1997; pp 287–311.Google Scholar
  28. Litvinenko, V. I.; Popova, T. P.; Simonjan, A. V.; Zoz, I. G.; Sokolov, V. S. “Gerbstoffe” und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med. 1975 27 372–380.PubMedCrossRefGoogle Scholar
  29. Löliger, J. The use of antioxidants in foods. In Free Radicals and Food Additives; Aruoma, O. I., Halliwell, B., Eds.; Taylor & Francis: London, 1991; pp 121–150.Google Scholar
  30. Luckner, M. Secondary Metabolism in Microorganisms, Plants, and Animals; Springer: Berlin, 1990.Google Scholar
  31. Madsen, H. L.; Bertelsen, G. Spices as antioxidants. Trends Food Sci. Technol. 1995 6 271–277.CrossRefGoogle Scholar
  32. Madsen, H. L.; Nielsen, B. R.; Bertelsen, G.; Skibsted, L. H. Screening of antioxidative activity of spices. A comparison between assays based on ESR spin trapping and electrochemical measurement of oxygen consumption. Food Chem. 1996 57 331–337.CrossRefGoogle Scholar
  33. Martinez, B. C.; Park, C. H. Characteristics of batch suspension cultures of preconditioned Coleus blumei cells: sucrose effect. Biotechnol. Prog. 1993 9 97–100.CrossRefGoogle Scholar
  34. Meinhard, J.; Petersen, M.; Alfermann, A. W. Rosmarinic acid in organ cultures of Coleus blumei. Planta Med. 1993 59 A 649.CrossRefGoogle Scholar
  35. Mizukami, H.; Ogawa, T.; Ohashi, H.; Ellis, B. E. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract. Plant Cell Rep. 1992 11 480–483.CrossRefGoogle Scholar
  36. Mizukami, H.; Tabira, Y.; Ellis, B. E. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep. 1993 12 706–709.CrossRefGoogle Scholar
  37. Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962 15 473–497.CrossRefGoogle Scholar
  38. Nakatani, N. Chemistry of antioxidants from Labiatae Herbs. In Food Chemicals for Cancer Prevention II; Ho, C. T., Osawa, T., Huang, M. T., Rosen, R. T., Eds.; American Chemical Society: Washington, DC, 1994; pp 144–153.CrossRefGoogle Scholar
  39. Namiki, M. Antimutagen and anticarcinogen research in Japan. In Food Chemicals for Cancer Prevention I; Huang, M. T., Osawa, T., Ho, C. T., Rosen, R. T., Eds.; American Chemical Society: Washington, DC, 1994; pp 65–81.Google Scholar
  40. Park, C. H.; Martinez, B. Enhanced release of rosmarinic acid from Coleus blumei permeabilized by dimethyl sulfoxide (DMSO) while preserving cell viability and growth. Biotechnol. Bioeng. 1992 40 459–464.PubMedCrossRefGoogle Scholar
  41. Park, C. H.; Martinez, B. Growth and production characteristics of permeabilized Coleus blumei cells in immobilized fed-batch culture. Plant Cell Rep. 1994 13 459–463.CrossRefGoogle Scholar
  42. Pamham, M. J.; Kesselring, K. Rosmarinic acid. Drugs of the Future 1985 10 756–757.Google Scholar
  43. Petersen, M. S. Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 1991 30 2877–2881.CrossRefGoogle Scholar
  44. Petersen, M. Coleus spp.: in vitro cultures and the production of forskolin and rosmarinic acid. In Biotechnology in Agriculture and Forestry Medicinal and Aromatic Plants VI; Bajaj, Y. P. S., Ed.; Springer: Berlin, 1994; pp 69–92.Google Scholar
  45. Petersen, M. Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 1997 45 1165–1172.CrossRefGoogle Scholar
  46. Petersen, M.; Alfermann, A. W. Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: Hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z. Naturforsch. 1988 43c 501–504.Google Scholar
  47. Petersen, M.; Häusler, E.; Karwatzki, B.; Meinhard, J. Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei. Planta 1993 189 10–14.CrossRefGoogle Scholar
  48. Petersen, M.; Szabo, E.; Passmann, A. Rosmarinic acid accumulation in suspension cultures of Coleus blumei is stimulated by fungal elicitors and methyl jasmonate. Abstracts of Lectures and Poster Presentations. 43rd Annual Congress on Medicinal Plant Research, Halle (Saale), Germany, 1995.Google Scholar
  49. Razzaque, A.; Ellis, B. E. Rosmarinic acid production in Coleus cell cultures. Planta 1977 137 287–291.CrossRefGoogle Scholar
  50. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-antioxidant relationships of flavonoids and phenolic acids. Free Rd. Biol. Med. 1996 20 933–956.CrossRefGoogle Scholar
  51. Scarpati, M. L.; Oriente, G. Isolamento e costituzione dell’acido rosmarinico (dal rosmarinus off). Ric. Sci. 1958 28 2329–2333.Google Scholar
  52. Schuler, P. Natural antioxidants exploited commercially. In Food Antioxidants; Hudson, B. J. F., Ed.; Elsevier: London, 1990; pp 99–170.CrossRefGoogle Scholar
  53. Spencer, M. The production of novel peroxidases from plant cell cultures. Presented at the Symposium “Plant cell, tissue and organ cultures in liquid media”, Prague; July 1994.Google Scholar
  54. Steinegger, E.; Hänsel, R. Pharmakognosie; Springer: Berlin, 1992.Google Scholar
  55. Su, W. W.; Humphrey, A. E. Production of rosmarinic acid in high density perfusion cultures of Anchusa officinalis using a high sugar medium. Biotechnol. Lett. 1990 12 793–798.CrossRefGoogle Scholar
  56. Su, W. W.; Humphrey, A. E. Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor: Biotechnol. Lett. 1991 13 889–892.CrossRefGoogle Scholar
  57. Su, W. W.; Lei, F. Rosmarinic acid production in perfused Anchusa officinalis culture: effect of inoculum size. Biotechnol Lett. 1993 15 1035–1038.CrossRefGoogle Scholar
  58. Su, W. W.; Lei, F.; Su, L. Y. Perfusion strategy for rosmarinic acid production by Anchusa officinalis. Biotechnol. Bioeng. 1993 42 884–890.CrossRefGoogle Scholar
  59. Sumaryono, W.; Proksch, P.; Hartmann, T.; Nimtz, M.; Wray, V. Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phytochemistry 1991 30 3267–3271.CrossRefGoogle Scholar
  60. Tada, H.; Murakami, Y.; Omoto, T.; Shimomura, K.; Ishimaru, K. Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 1996 42 431–434.CrossRefGoogle Scholar
  61. Ulbrich, B.; Wiesner, W.; Arens, H. Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In Primary and Secondary Metabolism of Plant Cell Cultures; Neumann, K.H., Barz, W., Reinhard, E., Eds.; Springer: Berlin, 1985; pp 293–303.CrossRefGoogle Scholar
  62. Whitaker, R. J.; Hashimoto, T.; Evans, D. A. Production of the secondary metabolite, rosmarinic acid, by plant cell suspension cultures. Ann. New York Acad. Sci. 1984 435 364–366.CrossRefGoogle Scholar
  63. Zenk, M. H.; El-Shagi, H.; Ulbrich, B. Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 1977 64 585–586.CrossRefGoogle Scholar
  64. Zenk, M. H.; Etschenberg, E.; Graf, E. Verwendung von Rosmarin bei der Bekämpfung von Entzündungen and hierbei eingesetzte Arzneimittel. German Patent No. DE 2952114 Al; 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Maike Petersen
    • 1
  1. 1.Institut für Entwicklungs- und Molekularbiologie der PflanzenHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations