Plant Cell and Tissue Culture for Food Ingredient Production

Safety Considerations
  • Tong-Jen Fu


An understanding of the safety concerns associated with Plant Cell and Tissue Culture (PCTC) processes will help develop sound safety assessment criteria for PCTC-derived food ingredients. Most food ingredients are mixtures of many components and in some cases contain naturally occurring toxins. Safety considerations on the use of PCTC for food ingredient production should focus not only on the effect of processing on the product of interest but also on the overall product profile, toxin level, cell line stability and production consistency. The safety of PCTC-derived food ingredients depends on all stages of manufacturing, including cell line development, process scale-up, production, and purification. This chapter discusses the potential safety concerns associated with applying various PCTC technologies at each stage of production.


Hairy Root Cell Suspension Culture Hairy Root Culture Plant Cell Culture Food Ingredient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aird, E. L. H.; Hamill, J. D.; Robins, R. J.; Rhodes, M. J. C. Chromosome stability in transformed hairy root cultures and the properties of variant lines of Nicotiana rustica hairy roots. In Manipulating Secondary Metabolism in Culture; Robins, R. J., Rhode, J. C., Eds.; Cambridge University Press: Cambridge, U.K., 1988; pp137–144.Google Scholar
  2. Alfermann, A. W.; Schuller, L.; Reinhard, E. Biotransformation of cardiac glycosides by immobilized cells of Digitalis Janata. Planta Medica 1980, 40, 218–223.CrossRefGoogle Scholar
  3. Ambros, P. F.; Matzke, A. J. M.; Matzke, M. A. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J. 1986, 5,2073–2077.PubMedGoogle Scholar
  4. Asada, M.; Shuler, M. L. Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl. Microbiol. Biotechnol. 1989, 30, 475–481.CrossRefGoogle Scholar
  5. Bao, P. H.; Granata, S.; Castiglione, S.; Wang, G.; Giordani, C.; Cuzzoni, E.; Damiani, G.; Bandi, C.; Datta, S. K.; Datta, K.; Potrykus, I.; Callegarin, A.; Sala, F. Evidence for genomic changes in transgenic rice (Oryza saliva L.) recovered from protoplasts. Transgenic Research 1996, 5, 97–103.PubMedCrossRefGoogle Scholar
  6. Becker, H.; Chavadej, S.; Thies, P. W.; Finner, E. The structure of new valepotriates from tissue cultures of Valeriana wallichii. Planta Medica 1984, 50, 245–248.PubMedCrossRefGoogle Scholar
  7. Berlin, J.; Fecker, L.; Herminghaus, S.; Rügenhagen, C. Genetic modification of plant secondary metabolism: alteration of product levels by overexpression of amino acid decarboxylases. In Advances in Plant Biotechnology; Ryu, D. D. Y, Furusake, S., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp 57–81.Google Scholar
  8. Berlin, J.; Sasse, F. Selection and screening techniques for plant cell cultures. Adv. Biochem. Eng. Biotechnol. 1985, 31, 99–132.Google Scholar
  9. Bricout, J.; Garcia-Rodriguez, M. J.; Paupardin, C. Saussay, R. Biosynthése de composés monoterpéniques par les tissus de quelques espéces de menthes cultivées in vitro. C. R. Acad. Sci. Paris Ser D, 1978, 287, 611–613.Google Scholar
  10. Brodelius, P.; Nilsson, K. Entrapment of plant cells in different matrices. FEBS Lett. 1980, 122, 312–316.CrossRefGoogle Scholar
  11. Brodelius, P.; Mercke, P.; Llanius, L. Metabolic engineering of plant secondary metabolism: a tool to improve the productivity of plant cell cultures. Abstract of Papers, 2l3`h National meeting of the American Chemical Society, San Francisco, CA; American Chemical Society: Washington, DC, 1997; AFDG 026.Google Scholar
  12. Buitelaar, R. M.; Langenhoff, A. M.; Heidstra, R.; Tramper, J. Growth and thiophene production by hairy root cultures of Tagetes patula in various two-liquid-phase bioreactors. Enzyme Microb. Technol. 1991, 13, 487–494.CrossRefGoogle Scholar
  13. Butcher, D. N.; Connolly, J. D.; An investigation of factors which influence the production of abnormal terpenoids by callus cultures of Andrographis paniculata Nees. J. Exp. Bot. 1971, 22, 314–322.CrossRefGoogle Scholar
  14. Byrne, M. C.; Koplow, J.; David, C.; Tempé, J.; Chilton, M-D. Structure of T-DNA in roots transformed by Agro-bacterium rhizogenes. J. Mol. Appl. Genet. 1983, 2, 201–209.PubMedGoogle Scholar
  15. Carew, D. P.; Staba, E. J. Plant tissue culture: its fundamentals, application and relationship to medicinal plant studies.Lloydia 1965, 28, 1–26.Google Scholar
  16. Chaleff, R. S. Isolation of agronomically useful mutants from plant cell cultures. Science 1983 219, 676–682. Chappell, J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46, 521–547.CrossRefGoogle Scholar
  17. Charlwood, B. V.; Moustou, C.; Essential oil accumulation in shoot-proliferation cultures of Pelargonium spp. In Manipulating Secondary Metabolism in Culture; Robins, R. J. Rhode, J. C., Eds.; Cambridge University Press: Cambridge, U.K., 1988; pp187–194.Google Scholar
  18. Collin, H. A.; Watts, M. Flavor production in culture. In Handbook of Plant Cell Culture; Evans, D. A., Sharp, W. R., Ammirato, P. V., Yamada, Y., Eds.; Macmillan Publishing Co.: New York, NY, 1984; Vol. 1, Chapter 24.Google Scholar
  19. Cony, J. P.; Reed, W. L.; Curtis, W. R. Enhanced recovery of solavetivone from Agrobacterium transformed root cultures of Hyoscyamus muticus using integrated product extraction. Biotechnol. Bioeng. 1993, 42, 503–508.CrossRefGoogle Scholar
  20. Demeke, T.; Lynch, D. R.; Kawchuk, L. M.; Kozub, G. C.; Armstrong, J. D. Genetic diversity of potato determined by random amplified polymorphic DNA analysis.Plant Cell Reports 1996,15, 662–667.CrossRefGoogle Scholar
  21. Deus-Neumann, B.; Zenk, M. H. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Medica 1984, 50, 427–431.PubMedCrossRefGoogle Scholar
  22. DiCosmo, F.; Misawa, M. Eliciting secondary metabolism in plant cell cultures. Trends in Biotechnology 1985, 3, 318–322.CrossRefGoogle Scholar
  23. Dömenburg, H.; Knorr, D. Elicitation of chitinases and anthraquinones in Morinda citrifolia cell cultures. Food Biotechnology 1994, 8, 57–65.CrossRefGoogle Scholar
  24. Dömenburg, H.; Knorr, D. Generation of colors and flavors in plant cell and tissue cultures. Critical Reviews in Plant Sciences 1996, 15, 141–168.Google Scholar
  25. Dougall, D. K.; Johnson, J. M.; Whitten, G. H. A clonal analysis of anthocyanin accumulation by cell cultures of wild carrot. Planta 1980, 149, 292–297.CrossRefGoogle Scholar
  26. Endo, T.; Yamada, Y. Alkaloid production in cultured roots of 3 species of Duboisia. Phytochemistry 1985, 24, 1233–1236.CrossRefGoogle Scholar
  27. Facchini, P. J.; DiCosmo, F. Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.)G.Don immobilized by adhesion to glass fibers. Appl. Microbiol. Biotechnol. 1991, 35, 382–392.PubMedCrossRefGoogle Scholar
  28. FAO/WHO. Biotechnology and Food Safety Report of a Joint FAO/WHO Consultation, FAO Food and Nutrition Paper 61, Rome, 1996.Google Scholar
  29. Feldman, K., Marks, M.; Christianson, M.; Quatrano, R. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 1989, 243, 1351–1354.CrossRefGoogle Scholar
  30. Finnegan, J.; McElroy, D. Transgene inactivation: plants fight back. Bio/Technology 1994,12, 883–888.CrossRefGoogle Scholar
  31. Flores, H.E.; Hoy, M. W.; Pickard, J. J. Secondary metabolites from root cultures. Trends in Biotechnology 1987, 5, 64–69.CrossRefGoogle Scholar
  32. Funk, C; Brodelius, P. Influence of growth regulators and an elicitor on phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Phytochemistry 1990, 29, 845–848.CrossRefGoogle Scholar
  33. Gavazzi, G.; Tonelli, C; Todesco, G.; Arreghini, E.; Raffaldi, F.; Vecchio, F.; Barbuzzi, G.; Biasini, M. G.; Sala, F. Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum L.). Theo?: Appl. Genet. 1987, 74, 733–738.Google Scholar
  34. Goddijn, O. J.; Pennings, E. J.; van der Helm, P.; Schilperoort, R. A.; Verpoorte, R.; Hoge, J. H. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall callus results in increased tryptamine level but not in increased terpenoid indole alkaloid production. Transgenic Res. 1995, 4, 315–323.PubMedCrossRefGoogle Scholar
  35. Gould, A. R. Factors controlling generation of variability in vitro. In Cell Culture and Somatic Cell Genetics of Plants; Vasil, I. K., Ed.; Academic Press: New York, NY, 1986; Vol.3, Chapter 29.Google Scholar
  36. Hall, R. D.; Yeoman, M. M. Intercellular and intercultural heterogeneity in secondary metabolite accumulation in cultures of Catharanthus roseus following cell line selection. J. Exp. Bot. 1987, 38, 1391–1398.CrossRefGoogle Scholar
  37. Hänisch ten Cate, C.; Ramulu, K. S.; Dijkhuis, P; de Groot, B. Genetic stability of cultured hairy roots induced by Agrobacterium rhizogenes on tuber discs of potato cv. Bintje. Plant Science 1987 49, 217–222.CrossRefGoogle Scholar
  38. Hashimoto, T.; Yamada, Y. Scopolamine production in suspension cultures and redifferentiated roots of Hyoscya mus niger. Planta Medica 1983 47, 195–199.CrossRefGoogle Scholar
  39. Hashimoto, T.; Yamada, Y. Alkaloid biogenesis: molecular aspects. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45,257–285.CrossRefGoogle Scholar
  40. Hamill, J. D.; Robins, R. J.; Parr, A. J.; Evans, D. M.; Furze, J. M.; Rhodes, M. J. C. Over xpressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol. Bio. 1990, 15, 27.CrossRefGoogle Scholar
  41. Jalal, M. A. F.; Collin, H. A. Polyphenols of mature plant, seedling and tissue cultures of Theobroma Cacao. Phytochemistry 1977, 16, 1377–1380.CrossRefGoogle Scholar
  42. Johnson, R. S.; Ravishankar, G. A.; Venkataraman, L. V. Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens Mill. Food Biotechnology 1991, 5, 197–205.CrossRefGoogle Scholar
  43. Karp, A.; Seberg, O.; Buiatti, M. Molecular techniques in the assessment of botanical diversity. Annals of Botany 1996, 78, 143–149.CrossRefGoogle Scholar
  44. Knuth, M. E. International Patent #W08900820,1989.Google Scholar
  45. Koncz, C.; Martini, N.; Mayerhofer, R.; Koncz-Kalman, Z.; Körber, H.; Redei, G.; Schell, J. High-frequency TDNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 1989, 86, 8467–8471.PubMedCrossRefGoogle Scholar
  46. Knopp, E.; Strauss, A.; Wehrli, A. Root induction on several Solanaceae species by Agrobacterium rhizogenes and the determination of root tropane alkaloid content. Plant Cell Reports 1988, 7, 590–593.CrossRefGoogle Scholar
  47. Kurata, H.; Furusake, S. Immobilized Coffea arabica cell culture using a bubble-column reactor with controlled light intensity. Biotechnol. Bioeng. 1993, 42, 494–502.PubMedCrossRefGoogle Scholar
  48. Larkin, P. J.; Scowcroft, W. R., Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 1981, 60, 197–214.CrossRefGoogle Scholar
  49. Lindsey, K; Yeoman, M. M. The synthetic potential of immobilized cells of Capsicum frutescens Mill. cv. annuum. Planta 1984, 162, 495–501.CrossRefGoogle Scholar
  50. Mano, Y.; Nabeshima, S. Matsui, C.; Ohkawa, H.; Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agri. Biol. Chem. 1986 50, 2715–2722.CrossRefGoogle Scholar
  51. Mano, Y.; Ohkawa, H.; Yamada, Y. Production of tropane alkaloids by hairy root cultures of Duloisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Science 1989, 59, 191–201.CrossRefGoogle Scholar
  52. Matsumoto, T.; Tanaka, N.; Production of phytoecdysteroids by hairy root cultures of Ajuga reptans var. atropurpurea. Agri. Biol. Chem. 1991 55, 1019–1025. CrossRefGoogle Scholar
  53. Minami, E; Kuchitsu, K.; He, D. Y.; Kouchi, H.; Midoh, N.; Ohtsuki, Y.; Shibuya, N. two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-actylchitoheptaose, a biotic elicitor for phytoalexin production. Plant Cell Physiol. 1996, 37, 563–567.PubMedCrossRefGoogle Scholar
  54. Miura, Y.; Hirata, K.; Kurano, N.; Miyamoto, K.; Uchida, K. Formation of vinblastine in multiple shoot culture of Catharanthus roseus. Planta Med. 1988, 54, 18–20.CrossRefGoogle Scholar
  55. Misawa, M. Production of useful plant metabolites. Adv. Biochem. Eng. Biotechnol. 1985, 31, 59–88.Google Scholar
  56. Moreno, P. R. H.; Poulsen, C.; van der Heijden, R.; Verpoorte, R. Effects of elicitation on different metabolic pathways in Catharanthus roseus (L.) G. Don cell suspension cultures. Enzyme and Microbial Technology 1996, 18, 99–107.CrossRefGoogle Scholar
  57. Nakajima, H.; Sonomoto, K.; Usui, N.; Sato, F.; Yamada, Y.; Tanaka, A.; Fukui, S. Entrapment of Lavandula vera cells and production of pigments by entrapped cells. J. Biotechnol. 1985, 2, 107–117.CrossRefGoogle Scholar
  58. Nakajima, H.; Sonomoto, K.; Sato, F.; Yamada, Y.; Tanaka, A. Immobilized plant cell reactor for continuous production of blue pigments. Agric. Biol. Chem. 1989, 53,3077–3078.CrossRefGoogle Scholar
  59. Ni, W.; Fahrendorf, T.; Ballance, G. M.; Lamb, C. J.; Dixon, R. A. Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Molecular Biology 1996, 30, 427–438.PubMedCrossRefGoogle Scholar
  60. OECD, Safety Evaluation of Foods Derived by Modem Biotechnology: Concepts and Principles; OECD: Paris, France, 1993.Google Scholar
  61. Parr, A.; Hamill, J. D. Relationship between Agrobacterium rhizogenes transformed hairy roots and Intact, uninfected Nicotiana plants. Phytochemistry 1987, 26, 3241–3245.CrossRefGoogle Scholar
  62. Payne, G.; Bringi, V.; Prince, C.; Shuler, M. Plant Cell and Tissue Culture in Liquid Systems. Hanser Publishers: New York, NY, 1992.Google Scholar
  63. Redenbaugh, K; Hiatt, W.; Martineau, B.; Kramer, M; Sheehy, R.; Sanders, R.; Houck, C.; Emlay, D. Safety Assessment of Genetically Engineered Fruits and Vegetables: A Case Study of the FLAVR SAVRTm Tomato. CRC Press: Boca Raton, FL, 1992.Google Scholar
  64. Roja, P. C.; Sipahimalani, A. T.; Heble, M. R.; Chadha, M. S. Multiple shoot cultures of Rauvolfia serpentina: growth and alkaloid production. Journal of Natural Products 1987, 50, 872–875.CrossRefGoogle Scholar
  65. Rus-Kortekaas, W.; Smulders, M. J. M.; Arens, P.; Vosman, B. Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome 1994, 37, 375–381.PubMedCrossRefGoogle Scholar
  66. Sahai, O. Plant tissue culture. In Bioprocess Production of Flavor, Fragrance,and Color Ingredients; Gabelman, A. Ed.; Wiley and Sons: New York, NY, 1994; Chapter 8.Google Scholar
  67. Schlatmann, J. E.; Nuutila, A. M.; van Gulik, W. M.; ten Hoopen, H. J. G.; Verpoorte, R.; Heijnen, J. J. Scale-up of ajmalicine production by plant cell cultures of Catharanthus roseus. Biotechnol. Bioeng. 1993, 41, 254–262.Google Scholar
  68. Scragg, A. H.; Morris, P.; Allan, E. J.; Bond, P.; Fowler, M. W. Effect of scale-up on serpentine formation by Catharanthus roseus suspension cultures. Enzyme Microb. Technol. 1987, 9, 619–624.CrossRefGoogle Scholar
  69. Selby, C.; Collin, H. A. Clonal variation in growth and flavor production in tissue cultures of Allium cepa L. Ann. Bot. 1976, 40, 911–918.Google Scholar
  70. Shuler, M. L.; Hirasuna, T. J.; Prince, C. L.; Bringi, V. Bioreactor considerations for producing flavors and pigments from plant tissue culture. In Biotechnology and Food Process Engineering; Schwartzberg, H. G., Rao, M. A., Eds.; Marcel Dekker: New York, NY, 1990; Chapter 3.Google Scholar
  71. Spencer A.; Hamill, J. D.; Rhodes, M. J. C. Production of terpenes by differentiated shoot cultures of Mentha citrata transformed with Agrobacterium tumefaciens T37. Plant Cell Reports 1990,8, 601–604.CrossRefGoogle Scholar
  72. Stafford, A. The manufacture of food ingredients using plant cell and tissue cultures. Trends in Food Science and Technology 11,1991, 116–121.CrossRefGoogle Scholar
  73. Su, W. W. Bioprocessing technology for plant cell suspension cultures. Applied Biochemistry and Biotechnology 1995, 50, 189–230.CrossRefGoogle Scholar
  74. Sugimoto, Y.; Sugimura, Y.; Yamada, Y. Effects of culture conditions on bisbenzylisoquinoline alkaloid production in cultured roots of Stephania cepharantha. Agric. Biol. Chem. 1988, 52, 1495–1498.CrossRefGoogle Scholar
  75. Taya, M.; Mine, K.; Kino-oka, M.; Tone, S.; Ichi, T. Production and release of pigments by culture of transformed hairy root of red beet. Journal of Fermentation and Bioengineering 1992, 73, 31–36.CrossRefGoogle Scholar
  76. Tamponnet, C.; Costantino, F.; Barbotin, J-N.; Calvayrac, R. Cytological and physiological behavior of Euglena gracillis cells entrapped in a calcium alginate gel. Physiol. Plant 1985, 63, 277–283.CrossRefGoogle Scholar
  77. U. S. FDA. Statement of policy: foods derived from new plant varieties. Federal Register 1992, 57, 22983–23005.Google Scholar
  78. van den Bulk, R. W.; Löftler, H. J. M.; Lindhout, W. H.; Koornneef, M. Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theor. Appl. Genet. 1990, 80, 817–825.CrossRefGoogle Scholar
  79. van der Maas, H. M.; de Jong, E. R.; Rueb, S.; Hensgens, L. A. M.; Krens, F. A. Stable transformation and longterm expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.). Plant Molecular Biology 1994, 24, 401–405.PubMedCrossRefGoogle Scholar
  80. Vilaine, F.; Casse-Delbart, F. Independent indication of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol. Gen. Genet. 1987, 206,17–23.CrossRefGoogle Scholar
  81. Walbot, V. and Cullis, C. A. Rapid genomic change in higher plants. Ann. Rev. Plant Physiol. 1985, 36, 367–396.CrossRefGoogle Scholar
  82. Wright, J. Essential oils. In Food Flavorings, Second Edition; Ashurst, P. R., Ed.; Blackie Academic and Professional: Glasgow, UK, 1995; Chapter 2.Google Scholar
  83. Zambryski, R Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Ann. Rev. Genet. 1988, 22,1–20. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Tong-Jen Fu
    • 1
  1. 1.National Center for Food Safety and TechnologyU.S. Food and Drug AdministrationSummit-ArgoUSA

Personalised recommendations