Skip to main content

Combining Tectonics and Thermal Fields in Taranaki Basin, New Zealand

  • Chapter
Geothermics in Basin Analysis

Abstract

The Taranaki Basin, New Zealand, is used to illustrate the relationships between tectonics and thermal fields in an active sedimentary basin. The Cenozoic basin lies 400 km west of the Pacific-Australian subduction plate boundary and 200 km above the subducting Pacific plate. The western half of the basin (Western Platform) has not been affected by Miocene to Recent plate boundary deformation whereas the eastern half (Eastern Mobile Belt) has experienced at various times rapid burial, uplift and denudation, structural inversion, and igneous intrusion. This regional separation permits calibration of the various tectonic and thermal interplays, a feature not afforded most tectonically active sedimentary basins.

Present-day surface heat-flow values average 57 mWnr−2 in both the western and eastern regions. Surface heat flow is remarkably constant in the Western Platform, but varies by more than 20 mWm−2 in the Eastern Mobile Belt. Much of this surface heat-flow variation is reconciled with detailed basin analysis and thermal modeling that accounts for burial and exhumation, both of which locally exceed 2 km in time spans of a few million years. The largest lateral surface heat-flow variation in the Eastern Mobile Belt is a south to north increase from 50 to 75 mWm−2 for a lateral distance of less than 50 km. The high heat flow is spatially coincident with the onshore Taranaki volcanoes suggesting a causal relationship. Apatite fission track and vitrinite reflectance data and modeling, in combination with detailed basin analysis, show that the heat flow has been elevated for <1 My and probably is associated with upper crustal intrusion.

Even though we can account for most of the obvious anomalies in the surface heat-flow distribution, hidden thermal anomalies exist that are not noticeable at the surface. After accounting for the obvious burial, exhumation, igneous, and thrust-related transient thermal effects, analysis of modeled basal heat flow (applied at 40 km depth) reveals significant anomalies in the thermal budget. Basal heat flow varies by more than a factor of two between wells in the Eastern Mobile Belt and Western Platform regions, even where surface heat flow is the same. Our modeling shows that a combination of low heat-producing crust and the heat sink effects of crustal thickening below the basin in the Eastern Mobile Belt can account for the thermal budget anomalies, which is consistent with gravity and magnetic data. A significant aspect of this study is that some thermal anomalies may be revealed only after combining geothermics and detailed basin analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, P. A., and Allen, J. R., 1990, Basin analysis-principles and applications: Blackwell, London, 451 p.

    Google Scholar 

  • Allis, R. G., Armstrong, P. A., and Funnell, R. H., 1995, Implications of high heat flow anomaly around New Plymouth: New Zealand Jour. Geol. Geophys., v. 38, no. 2, p. 121–130.

    Article  Google Scholar 

  • Allis, R. G., Armstrong, P. A., Funnell, R. H., and Chapman, D. S., 1997a, Exhumation of continental crust deduced from offset porosity-depth trends (abst.): EOS, Trans. AGU, v. 78, p. F640.

    Google Scholar 

  • Allis, R. G., Zhan. X, Evans, C., and Kroopnick, P., 1997b, Groundwater flow beneath Mt. Taranaki, New Zealand, and implications for oil and gas migration: New Zealand Jour. Geol. Geophys., v. 40, no. 2, p. 137–149.

    Article  Google Scholar 

  • Armstrong, P. A., 1996, Thermal history of the Taranaki Basin, New Zealand: unpubl. doctoral dissertation, Univ. Utah, 245 p.

    Google Scholar 

  • Armstrong, P. A., and Chapman, D. S., 1998, Beyond surface heat flow: an example from a tectonically active sedimentary basin: Geology, v. 26, no. 2, p. 183–186.

    Article  Google Scholar 

  • Armstrong, P. A., Allis, R. G., Funnell, R. H., and Chapman, D. S., in press, Late Neogene erosion patterns in Taranaki Basin (New Zealand): evidence from offset porosity-depth trends: submitted to Jour. Geophys. Res.

    Google Scholar 

  • Armstrong, P. A., Chapman, D. S., Funnell, R. H., Allis, R. G., and Kamp, P. J. J., 1996, Thermal modelling and hydrocarbon generation in an active-margin basin: Taranaki Basin, New Zealand: Am. Assoc. Petroleum Geologists Bull., v. 80, no. 8, p. 1216–1241.

    Google Scholar 

  • Armstrong, P. A., Kamp, P. J. J., Allis, R. G., and Chapman, D. S., 1997, Thermal effects of intrusion below the Taranaki Basin (New Zealand): evidence from combined apatite fission track age and vitrinite reflectance data: Basin Research, v. 9, no. 2, p. 151–169.

    Article  Google Scholar 

  • Birch, F., Roy, R. F., and Decker, E. R., 1968, Heat flow and thermal history in New England and New York, in Zen, E., White, W. S., Hadley, J. B., and Thompson, J. B., eds., Studies of Appalachian Geology-Northern and Maritime: Interscience, New York, p. 437–451.

    Google Scholar 

  • Blackwell, D. D., and Steele, J. L., 1989a, Thermal conductivity of sedimentary rocks: measurement and significance, in Naeser, N. D., and McCulloh, T. H., eds., Thermal History of Sedimentary Basins: Methods and Case Histories: Springer-Verlag, New York, p. 13–36.

    Chapter  Google Scholar 

  • Blackwell, D. D., and Steele, J. L., 1989b, Heat flow and geothermal potential of Kansas: Kansas Geol. Survey Bull. 226, p. 267–295.

    Google Scholar 

  • Bradshaw, J. D., 1993, A review of the Median Tectonic Zone: terrane boundaries and ferrane amalgamation near the Median Tectonic Line: New Zealand Jour. Geol. Geophys., v. 36, no. 1, p. 117–125.

    Article  Google Scholar 

  • Bullard, E. C., 1947, The time necessary for a borehole to attain temperature equilibrium: Mon. Notes Roy. Astr. Soc., v. 5, no. 5, p. 127–130.

    Article  Google Scholar 

  • Burnham, A. K., and Sweeney, J. J., 1989, A chemical kinetic model of vitrinite maturation and reflectance: Geochim. Cosmochim. Acta, v. 53, no. 10, p. 2649–2657.

    Article  Google Scholar 

  • Cermak, V., Bodri, L., Rybach, L., and Buntebarth, G., 1990, Relationship between seismic velocity and heat production: comparison of two sets of data and test of validity: Earth Planet. Sci. Let., v. 99, no. 1-2, p. 48–57.

    Article  Google Scholar 

  • Chapman, D. S., and Furlong, K. P., 1992, Thermal state of the continental lower crust, in Fountain, D. M., Arculus, R., and Kay, R. M., eds., Continental lower crust: Developments in Geotectonics, v. 23, Elsevier, Amsterdam, p. 177–199.

    Google Scholar 

  • Davy, B., 1992, Magnetic anomalies of the New Zealand basement: New Zealand Oil Explor. Conf. Proc. 1991, p. 134–144.

    Google Scholar 

  • Deming, D., 1989, Application of bottom-hole temperature corrections in geothermal studies: Geothermics, v. 18, no. 5-6, p. 775–786.

    Article  Google Scholar 

  • Deming, D., 1994, Estimation of thermal conductivity anisotropy of rock with application to the determination of terrestrial heat flow: Jour. Geophys. Res., v. 99, no. B11, p. 22,087–22,091.

    Article  Google Scholar 

  • Deming, D., and Chapman, D. S., 1988, Heat flow in the Utah-Wyoming thrust belt from analysis of bottom-hole temperature data measured in oil and gas wells: Jour. Geophys. Res., v. 93, no. B11, p. 13,657–13,672.

    Article  Google Scholar 

  • Funnell, R. H., Allis, R. G., Chapman, D. S., and Armstrong, P. A., 1996, Thermal regime of the Taranaki basin, New Zealand: Jour. Geophys. Res., v. 101, no. B11, p. 25,197–25,215.

    Article  Google Scholar 

  • Furlong, K. P., Hanson, R. B., and Bowers, J. R., 1991, Modelling thermal regimes, in Kerrick, D. M., ed., Contact Metamorphism: Mineral. Soc. America, Reviews in Mineralogy, v. 26, p. 437–505.

    Google Scholar 

  • Heasler, H. P., and Kharitonova, N. A., 1996, Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin, Wyoming: Am. Assoc. Petroleum Geologists Bull., v. 80, no. 8, p. 630–646.

    Google Scholar 

  • Hermanrud, C., 1993, Basin modelling techniques-an overview, in Dore, A. G., and others, eds., Basin Modelling}: Advances and Applications: Elsevier, Amsterdam, p. 1–34..

    Google Scholar 

  • Herrin, J. M., and Deming, D., 1996, Thermal conductivity of U.S. coals: Jour. Geophys. Res., v. 101, no. B11, p. 25,381–25,386.

    Article  Google Scholar 

  • Holt, W. E., and Stern, T. A., 1994, Subduction, platform subsidence, and foreland thrust loading: the late Tertiary development of Taranaki basin, New Zealand: Tectonics, v. 13, no. 5, p. 1068–1092.

    Article  Google Scholar 

  • Horner, D.R., 1951, Pressure buildup in wells: 3rd Proc. World Petrol. Cong., v. 2, p. 503–521.

    Google Scholar 

  • Hornibrook, N., 1992, New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota, in Tsuchi, R., and Ingle, J. C., eds., Pacific Neogene, the Environment, Evolution, and Events: Univ. Tokyo Press, Tokyo, p. 83–106.

    Google Scholar 

  • Issler, D. R., 1992, A new approach to shale compaction and stratigraphic restoration, Beaufort-Mackenzie basin and Mackenzie Corridor, northern Canada: Am. Assoc. Petroleum Geologists Bull., v. 76, no. 8, p. 1170–1189.

    Google Scholar 

  • Issler, D. R., and Beaumont, C., 1989, A finite element model of the subsidence and thermal evolution of extensional basins: application to the labrador continental margin, in Naeser, N. D., and McCulloh, T. H., eds., Thermal History of Sedimentary Basins: Methods and Case Histories: Springer-Verlag, New York, p. 239–268.

    Chapter  Google Scholar 

  • Kamp, P. J., and Hegarty, K. A., 1989, Multigenetic gravity couple across a modern convergent margin: inheritance from Cretaceous extension: Geophys. Jour., v. 96, no. 1, p. 33–41.

    Article  Google Scholar 

  • Kappelmeyer, O., and Haenel, R., 1974, Geothermics with special reference to application, in Rosenbach, O., and Morelli, C., eds., Geoexploration Monograph Seriel 1: Geopublication Association, Berlin.

    Google Scholar 

  • King, P. R., 1994, The habitat of oil and gas in the Taranaki basin: New Zealand Explor. Conf. Proc. 1994, p. 180–203.

    Google Scholar 

  • King, P. R., and Thrasher, G. P., 1992, Post-Eocene development of the Taranaki basin, New Zealand, convergent overprint of a passive margin, in Watkins, J. S., Zhiqiang, F., and McMillen, K. J., eds., Geology and Geophysics of Continental Margins: Am. Assoc. Petroleum Geologists Mem. 53, p. 93–118.

    Google Scholar 

  • King, P. R., and Thrasher, G. P., 1996, Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand: Inst. Geol. And Nuclear Sciences Ltd., Monograph 13, Lower Hurt, New Zealand; 243 p., 6 enclosures.

    Google Scholar 

  • Knox, G. J., 1982, Taranaki Basin, structural style and tectonic setting: New Zealand Jour. Geol. Geophys., v. 25, no. 2, p. 125–140.

    Article  Google Scholar 

  • Lachenbruch, A. H., 1970, Crustal temperatures and heat production: implications of the linear heat-flow relationship: Jour. Geophys. Res., v. 75, no. 17, p. 3291–3300.

    Article  Google Scholar 

  • Lachenbruch, A. H., and Brewer, M. C., 1959, Dissipation of the temperature effect of drilling a well in arctic Alaska: U.S. Geol. Survey Bull. 1083C, p. 73–109.

    Google Scholar 

  • Lachenbruch, A. H., and Sass, J. H., 1978, Models of an extending lithosphere and heat flow in the Basin and Range province: Geol. Soc. America Mem. 152, p. 209–250.

    Google Scholar 

  • Lee, Y., and Deming, D., 1998, Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies: Jour. Geophys. Res., v. 103, no. B2, p. 2447–2454.

    Article  Google Scholar 

  • Locke, C. A., Cassidy, J., and MacDonald, A., 1993, Three-dimensional structure of relict stratovolocanoes in Taranaki, New Zealand: evidence from gravity data: Jour. Volcanology and Geothermal Res., v. 59, no. 1-2, p. 121–130.

    Article  Google Scholar 

  • Luheshi, M. N., 1983, Estimation of formation temperatures from borehole measurements: Geophys. Jour. Roy. Astro. Soc., v. 74, no. 3, p. 747–776.

    Google Scholar 

  • Magara, K., 1976, Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada basin: Am. Assoc. Petroleum Geol. Bull., v. 60, no. 4, p. 554–566.

    Google Scholar 

  • Neall, V. E., 1979, Geological map of New Zealand-New Plymouth, Egmont, and Manaia: Department of Scientific and Industrial Research, Wellington, Scale: 1:50,000..

    Google Scholar 

  • Nielsen, S. B., and Balling, N., 1990, Modelling subsidence, heat flow, and hydrocarbon generation in extensional basins: First Break, v. 8, no. 1, p. 23–31.

    Google Scholar 

  • Peacock, S. M., 1989, Thermal modeling of metamorphic pressure-temperature-time paths: forward approach, in Crawford, M. L., and Padovani, E., eds., Metamorphic Pressure-Temperature-Time Paths: Am. Geophys. Union, Washington, D.C., p. 57–102.

    Chapter  Google Scholar 

  • Pilaar, W. F. H., and Wakefield, L. I., 1978, Structural and stratigraphic evolution of the Taranaki Basin, offshore North Island, New Zealand: Aust. Petrol. Expl. Assoc. Jour., v. 18, pt. 1, p. 93–101.

    Google Scholar 

  • Richard, S. M., Smith, C. H., Kimbrough, D. L., Fitzgerald, P. G., Luyendyk, B. P., and M.McWilliams, M. O., 1994, Cooling history of the northern Ford Ranges, Marie Byrd Land, West Antarctica: Tectonics, v. 13, no. 4, p. 837–857.

    Article  Google Scholar 

  • Ridgway, N. M., 1969, Temperature and salinity of sea water at the ocean floor in New Zealand region: New Zealand Jour. Marine and Freshwater Res., v. 3, p. 57–72.

    Article  Google Scholar 

  • Roman-Berdiel, T., Galais, D., and Brun, J. P., 1995, Analogue models of laccolith formation: Jour. Struct. Geology, v. 17, no. 9, p. 1337–1346.

    Article  Google Scholar 

  • Rose, K. H., 1991, Cook gravity anomaly map, oceanic series: New Zealand Dept. Sci. and Ind. Res., Wellington, scale 1:1,000,000..

    Google Scholar 

  • Roy, R. F., Blackwell, D. D., and Birch, F., 1968, Heat generation of plutonic rocks and continental heat flow provinces: Earth Planet. Sci. Lett., v. 5, no. 1, p. 1–12.

    Article  Google Scholar 

  • Sass, J. H., Lachenbruch, A. H., and Munroe, R. J., 1971, Thermal conductivities of rocks from measurements on fragments and its application to heat flow determinations: Jour. Geophys. Res., v. 76, no. 14, p. 3391–3401.

    Article  Google Scholar 

  • Sclater, J. G., and Christie, P. A. F., 1980, Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea Basin: Jour. Geophys. Res., v. 85, no. B7, p. 3711–3739.

    Article  Google Scholar 

  • Smith, L., and Chapman, D. S., 1983, On the thermal effects of groundwater flow 1. Regional scale systems: Jour. Geophys. Res., v. 88, no. B1, p. 593–608.

    Article  Google Scholar 

  • Stern, T. A., and Davey, F. J., 1990, Deep seismic expression of a foreland basin: Taranaki basin, New Zealand: Geology, v. 18, no. 10, p. 979–982.

    Google Scholar 

  • Thrasher, G. P., and Cahill, J. P., 1990, Subsurface maps of the Taranaki basin, New Zealand: New Zealand Geol. Survey Rept. G142, 45 p., 14 sheets..

    Google Scholar 

  • Tulloch, A. J., and Kimbrough, D. L., 1989, The Paparoa metamorphic core complex, New Zealand: Cretaceous extension associated with fragmentation of the Pacific margin of Gondwana: Tectonics, v. 8, no. 6, p. 1217–1234.

    Article  Google Scholar 

  • Tulloch, A. J., and Palmer, K., 1990, Tectonic implications of granite cobbles from the mid-Cretaceous Pororari Group, southwest Nelson, New Zealand: New Zealand Jour. Geol. Geophys., v. 33, no. 2, p. 205–217.

    Article  Google Scholar 

  • Van Wagoner, T., Armstrong, P. A., and Chapman, D. S., 1997, Thermal conductivity anisotropy of laminated sedimentary rocks (abst.): EOS, Trans. AGU, v. 78, p. F677.

    Google Scholar 

  • Walcott, R. I., 1987, Geodectic strain and the deformational history of the North Island of New Zealand during the late Cainozoic: Phil. Trans. Roy. Soc. London, v. A 321, no. 1557, p. 163–181.

    Google Scholar 

  • Wells, P. E., 1990, Porosities and seismic velocities of mudstones from Wairarapa and oil wells of North Island, New Zealand, and their use in determining burial history: New Zealand Jour. Geol. Geophys., v. 33, no. 1, p. 29–39.

    Article  Google Scholar 

  • Willett, S. D., 1988, Spatial variation of temperature and thermal history of the Uinta Basin: unpubl. doctoral dissertation, Univ. Utah, 121 p.

    Google Scholar 

  • Willett, S. D., 1992, Modelling thermal annealing of fission tracks in apatite, in Zentilli, M., and Reynolds, P. H., eds., Short Course on Low Temperature Thermochronology: Mineral. Assoc. Canada Short Course Handbook, p. 42–74.

    Google Scholar 

  • Willett, S. D., and Chapman, D. S., 1987, Analysis of temperatures and thermal processes in the Uinta Basin, in Beaumont, C., and Tankard, A. J., eds., Sedimentary Basins and Basin-Forming Mechanisms: Can. Soc. Petrol. Geology Mem. 12, p. 447–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armstrong, P.A., Chapman, D.S. (1999). Combining Tectonics and Thermal Fields in Taranaki Basin, New Zealand. In: Förster, A., Merriam, D.F. (eds) Geothermics in Basin Analysis. Computer Applications in the Earth Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4751-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4751-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7154-0

  • Online ISBN: 978-1-4615-4751-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics